首页> 外文期刊>Computational Materials Science >Large-strain viscoelastic-viscoplastic constitutive modeling of semi-crystalline polymers and model identification by deterministic/evolutionary approach
【24h】

Large-strain viscoelastic-viscoplastic constitutive modeling of semi-crystalline polymers and model identification by deterministic/evolutionary approach

机译:半结晶聚合物的大应变粘弹-粘塑性本构模型和确定性/演化方法的模型识别

获取原文
获取原文并翻译 | 示例
           

摘要

Above the glass transition temperature, a semi-crystalline polymer can behave like an elastomer or a stiff polymer according to the crystal content. For a reliable design of such polymeric materials, it is of prime importance to dispose a unified constitutive modeling able to capture the transition from thermoplasticlike to elastomeric-like mechanical response, as the crystal content changes. This work deals with polyethylene materials containing a wide range of crystal fractions, stretched under large strains at room temperature and different strain rates. A large-strain viscoelastic-viscoplastic approach is adopted to describe the mechanical response of these polymers. In order to identify the model parameters, an analytical deterministic scheme and a practical, "engineering-like", numerical tool, based on a genetic algorithm are developed. A common point of manipulated constitutive models is that the elementary deformation mechanisms are described by two parallel resistances; one describes the intermolecular interactions and the other deals with the molecular network stretching and orientation process. In a first approach, the semi-crystalline polymers are considered as homogeneous media; at each crystal content, the semi-crystalline polymer is thus considered as a new material and a new set of model parameters is provided. In a second approach, the semi-crystalline polymer is seen as a two-phase composite, and the effective contribution of the crystalline and amorphous phases to the overall mechanical response is integrated in the constitutive model, which allows simulating the transition from thermoplastic-like to elastomeric-like mechanical response. In this case, one set of model parameters is needed, the only variable being the crystal volume fraction. The identification results obtained using deterministic and numerical methods are discussed.
机译:在高于玻璃化转变温度时,根据晶体含量,半结晶聚合物的行为类似于弹性体或硬质聚合物。对于此类聚合物材料的可靠设计,最重要的是设置一个统一的本构模型,以捕获随着晶体含量变化而从热塑性样转变为类弹性体的机械响应。这项工作涉及聚乙烯材料,其中包含多种晶体组分,并在室温下以不同的应变速率在大应变下拉伸。采用大应变粘弹性-粘塑性方法来描述这些聚合物的机械响应。为了识别模型参数,开发了一种基于遗传算法的分析确定性方案和实用的“类似于工程”的数值工具。操纵本构模型的一个共同点是,基本变形机制由两个平行的阻力来描述。一个描述了分子间的相互作用,另一个描述了分子网络的拉伸和取向过程。在第一种方法中,将半结晶聚合物视为均质介质。在每种晶体含量下,半结晶聚合物因此被视为一种新材料,并提供了一组新的模型参数。在第二种方法中,半结晶聚合物被视为两相复合材料,并且本构模型中整合了结晶相和非晶相对整体机械响应的有效贡献,从而可以模拟从类似热塑性的转变对类似弹性体的机械响应。在这种情况下,需要一组模型参数,唯一的变量是晶体体积分数。讨论了使用确定性和数值方法获得的识别结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号