首页> 外文期刊>Computers and Electronics in Agriculture >The vegetation classification in coal mine overburden dump using canopy spectral reflectance.
【24h】

The vegetation classification in coal mine overburden dump using canopy spectral reflectance.

机译:利用冠层光谱反射率对煤矿覆土堆场植被进行分类。

获取原文
获取原文并翻译 | 示例
       

摘要

The canopy spectral characteristics of typical plants in the overburden of the Fuxin coal mine dump were measured and analyzed. The reflectance of Leymus chinensis was affected by the soil, with a slight shift from green (550 nm) to the near infrared (NIR) region. Changes in chlorophyll and water absorption were not significant in the red (670 nm) and NIR bands, respectively. The reflectance curve trend for Artemisia lavandulaefolia was similar to those of Sophora japonica and Ulmus pumila, while the reflectance of S. japonica and U. pumila fluctuated in the NIR region (760-1200 nm), especially with greater water absorption around 930 and 1120 nm. In contrast, the reflectance of A. lavandulaefolia fluctuated slightly around 930 nm and a significant peak appeared at 1127 nm. In addition, the spectral reflectance of S. japonica was lower than for the other species in the visible band (400-700 nm). However, it was higher than for L. chinensis in the NIR region (780-1200 nm). Three classifiers, the self-organizing map (SOM), learning-vector quantization (LVQ), and a probabilistic neural network (PNN), were used to classify the vegetation and the results of all classifiers were compared based on total spectral reflectance data from 400 to 1200 nm. The PNN was the best classifier in terms of training and testing accuracy. The first difference reflectance was calculated, and the red edge parameter was able to classify the herbs (L. chinensis and A. lavandulaefolia) and the arbores (S. japonica and U. pumila) with an accuracy of 77 and 84%, respectively, although it did not perform as well for detail species. A mixing parameter matrix was built based on the sensitive wavelengths (550, 674, 810, 935, and 1125 nm), the vegetation indices (SAVI and NDGI), and the water absorption slope. High classification accuracy was obtained by applying the mixing parameter matrix. This method could be used for revegetation monitoring and in decision making.
机译:测量并分析了阜新煤矿排土场覆盖层典型植物的冠层光谱特征。羊草的反射率受到土壤的影响,从绿色(550 nm)到近红外(NIR)区域略有偏移。在红色(670 nm)和近红外波段,叶绿素和吸水率的变化分别不明显。淡紫色蒿的反射率曲线趋势与日本悬铃木和榆树的反射率曲线相似,而S的反射率曲线相似。粳米和 U。在近红外区(760-1200 nm)处的pumila 波动,尤其是在930和1120 nm附近具有更大的吸水率。相反,A的反射率。 lavandulaefolia 在930 nm附近略有波动,并在1127 nm处出现明显的峰。另外,i的光谱反射率。在可见带(400-700 nm)中,粳稻比其他种类的粳稻都低。但是,它高于 L。在近红外区域(780-1200 nm)。使用三个分类器,即自组织图(SOM),学习矢量量化(LVQ)和概率神经网络(PNN)对植被进行分类,并基于来自总光谱反射率数据的所有分类器的结果进行了比较400至1200 nm。就训练和测试准确性而言,PNN是最佳分类器。计算出第一差反射率​​,红色边缘参数能够对草药( L.chinensis 和 lavandulaefolia )和乔木( S)进行分类。 japonica 和 U。pumila )的准确度分别为77%和84%,尽管它在细节种类上的表现不佳。根据敏感波长(550、674、810、935和1125 nm),植被指数(SAVI和NDGI)和吸水率建立混合参数矩阵。通过应用混合参数矩阵获得了高分类精度。该方法可用于植被监测和决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号