首页> 外文期刊>Computers and Electronics in Agriculture >A post-processing step error correction algorithm for overlapping LiDAR strips from agricultural landscapes
【24h】

A post-processing step error correction algorithm for overlapping LiDAR strips from agricultural landscapes

机译:来自农业景观的重叠LiDAR条带的后处理步骤误差校正算法

获取原文
获取原文并翻译 | 示例
           

摘要

In the processing of light detection and ranging (LiDAR) data, a step error is an abrupt change in estimates of elevation between adjacent strips and must be reduced before building a digital surface model (DSM) of elevation. Existing methodologies in the literature for removing this artifact require an analyst to (1) utilize the sensor and aircraft information of the LiDAR mission, (2) isolate homologous flat surfaces within regions of overlap of adjoining LiDAR strips to estimate the mean offset, or (3) a combination of the two. In this application involving an agricultural landscape, a different methodology was required because the necessary information from the laser scanner or internal navigation system (INS) of the aircraft was unavailable and it was not possible to successfully identify homologous flat surfaces. Therefore, a post-processing, quadratic optimization model was formulated to reduce step artifacts. Using statistics obtained from the geographic overlap of the strips with a benchmark strip, it was possible to determine from the elevation values of the LiDAR point clouds two quantities: the strip variance and the total variance. Using these values and related statistics, the optimization model estimated correction constants, called decision variables, that minimized the among-group variance of the adjoining strips. When the values of these decision variables are added to the point cloud elevations of their respective LiDAR strips, the systematic step errors among adjoining strips are minimized with respect to the elevations provided by the point cloud of the benchmark strip. Decision variable values ranged between -0.087 and 0.078m. The adjusted LiDAR strip point clouds were used to build a corrected DSM of a 638.2-ha agricultural landscape at a spatial resolution of 0.5m. The elevation range of the DSM is approximately 44-81m HAE (height above the ellipsoid), where the higher elevations are the tops of trees. Effectiveness of the optimization model approach to reduce the step errors was evaluated by comparing the DSM before and after adjustment. Several hillshade, gray scale image subsets, and profile plot comparisons between the before and after adjustment of the point clouds of the LiDAR strips illustrate the algorithm's performance in reducing step error effects.
机译:在光检测和测距(LiDAR)数据的处理中,阶跃误差是相邻条带之间的高程估计值的突变,必须在构建数字高程表面模型(DSM)之前减小它。文献中用于消除此伪影的现有方法要求分析人员(1)利用LiDAR任务的传感器和飞机信息,(2)在相邻LiDAR条带重叠区域内隔离同源平面以估计平均偏移量,或( 3)两者的结合。在涉及农业景观的该应用中,需要不同的方法,因为无法从飞机的激光扫描仪或内部导航系统(INS)获得必要的信息,并且无法成功识别出同源的平坦表面。因此,制定了后处理的二次优化模型以减少步骤伪像。使用从条带与基准条带的地理重叠处获得的统计数据,可以从LiDAR点云的高程值确定两个量:条带方差和总方差。使用这些值和相关统计信息,优化模型可以估算校正常数(称为决策变量),以将相邻带的组间差异最小化。当将这些决策变量的值添加到其各自的LiDAR条带的点云高程时,相对于基准条带的点云所提供的高程,相邻条带之间的系统步进误差将降至最低。决策变量值在-0.087到0.078m之间。调整后的LiDAR带状点云用于以0.5m的空间分辨率构建638.2公顷农业景观的校正DSM。 DSM的海拔范围约为HAE 44-81m(椭圆形上方的高度),其中较高的海拔是树木的顶部。通过比较调整前后的DSM,评估了优化模型方法减少阶跃误差的有效性。调整LiDAR条形点云前后前后的几个山体阴影,灰度图像子集和轮廓图比较说明了该算法在减少阶跃误差影响方面的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号