首页> 外文期刊>Computer Modeling in Engineering & Sciences >A Micromechanics Analysis of Nanoscale Graphite Platelet-Reinforced Epoxy Using Defect Green's Function
【24h】

A Micromechanics Analysis of Nanoscale Graphite Platelet-Reinforced Epoxy Using Defect Green's Function

机译:利用缺陷格林函数的纳米石墨片增强环氧树脂的微力学分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the modeling of overall property of composites, the effect of particle interaction has been either numerically taken into account within a (representative) volume element of a small number of particles or neglected/ignored in order for efficient solution to a large system of particles. In this study, we apply the point-defect Green's function (GF) to take into account the effect of particle interaction. It is applicable to small volume fractions of particles (within 10 %). The high efficiency of the method enables a simulation of a large system of particles with generally elastic anisotropy, arbitrary shape and composition, and arbitrary spatial distribution. In particular, we apply the method to study the nanoscale graphite platelet reinforced polymers, guided by some preliminary experimental observations. We first verify the method by comparing the prediction with a full-field model in the case of a regular lattice of particles. The comparison has demonstrated that the method is a considerable improvement over the classical Eshelby's method employing the regular GF and thus ignoring the effect of particle interaction. Upon the verification, we apply the method to examine the effect of a number of parameters on the overall composite behavior. The effect of particle interaction is shown to be strongly dependent on particle arrangement due to the strong elastic and geometrical anisotropy in graphite platelets. The strongest effect occurs when the platelets are orientated uniformly and stacked in a simple cubic lattice. However, the (overall) effect becomes trivial when the platelets are randomly orientated, which is expected. The effect of platelet aspect ratio is also studied. Finally, a thin soft layer is inserted between the platelets and the matrix material in order to simulate a partial bonding condition between them. It is shown to play a significant role in determining the overall composite behavior. The present work sets up a base for further large-scale simulations of micro-damages (microcracks, particle debonding, etc.) under interaction, as well as providing insights to further experimentation in graphite platelet nanocomposites.
机译:在对复合材料的整体性能进行建模时,已在数值上考虑了少量颗粒的(代表性)体积元素内的颗粒相互作用效应,或者为了有效地解决大型颗粒系统而忽略/忽略了它们。在这项研究中,我们应用点缺陷格林函数(GF)来考虑粒子相互作用的影响。它适用于小体积分数的颗粒(10%以内)。该方法的高效率可以模拟具有一般弹性各向异性,任意形状和组成以及任意空间分布的大型粒子系统。特别是,在一些初步的实验观察的指导下,我们将该方法应用于研究纳米级石墨片增强聚合物。我们首先通过将预测与全规则模型中的规则粒子相比较来验证该方法。比较表明,该方法相对于使用常规GF的经典Eshelby方法是一种重大改进,因此可以忽略粒子相互作用的影响。验证后,我们将使用该方法来检查许多参数对整体复合行为的影响。由于石墨片中强烈的弹性和几何各向异性,颗粒相互作用的影响显示出强烈依赖于颗粒排列。当血小板均匀地定向并堆叠在简单的立方晶格中时,效果最强。但是,当血小板随机取向时,(总体)效果变得微不足道,这是可以预期的。还研究了血小板纵横比的影响。最后,在血小板和基质材料之间插入一薄层软层,以模拟它们之间的部分结合状态。它在确定整体复合行为方面起着重要作用。本工作为进一步大规模模拟相互作用下的微损伤(微裂纹,颗粒剥离等)奠定了基础,并为进一步研究石墨片状纳米复合材料提供了见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号