...
首页> 外文期刊>Computer Modeling in Engineering & Sciences >A Scalar Homotopy Method for Solving an Over/Under-Determined System of Non-Linear Algebraic Equations
【24h】

A Scalar Homotopy Method for Solving an Over/Under-Determined System of Non-Linear Algebraic Equations

机译:一种求解非线性代数方程上/下确定系统的标量同伦方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Iterative algorithms for solving a system of nonlinear algebraic equations (NAEs): F_i(x_j) = 0, i, j = 1, ..., n date back to the seminal work of Issac Newton. Nowadays a Newton-like algorithm is still the most popular one to solve the NAEs, due to the ease of its numerical implementation. However, this type of algorithm is sensitive to the initial guess of solution, and is expensive in terms of the computations of the Jacobian matrix {partial deriv}F_i/{partial deriv}x_j and its inverse at each iterative step. In addition, the Newton-like methods restrict one to construct an iteration procedure for n-variables by using n-equations, which is not a necessary condition for the existence of a solution for underdetermined or overdetermined system of equations. In this paper, a natural system of first-order nonlinear Ordinary Differential Equations (ODEs) is derived from the given system of Nonlinear Algebraic Equations (NAEs), by introducing a scalar homotopy function gauging the total residual error of the system of equations. The iterative equations are obtained by numerically integrating the resultant ODEs, which does not need the inverse of {partial deriv}F_i/{partial deriv}x_j. The new method keeps the merit of homotopy method, such as the global convergence, but it does not involve the complicated computation of the inverse of the Jacobian matrix. Numerical examples given confirm that this Scalar Homotopy Method (SHM) is highly efficient to find the true solutions with residual errors being much smaller.
机译:求解非线性代数方程组(NAE):F_i(x_j)= 0,i,j = 1,...,n的迭代算法可以追溯到Issac Newton的开创性工作。如今,由于其数值实现的简便性,类牛顿算法仍然是解决NAE最受欢迎的算法。然而,这种类型的算法对解的初始猜测敏感,并且在每个迭代步骤的雅可比矩阵{偏导} F_i / {偏导} x_j及其逆的计算方面是昂贵的。另外,类似牛顿的方法限制了人们使用n方程构造n变量的迭代过程,这对于方程组未定或方程组的解的存在并不是必要条件。在本文中,通过引入标量同伦函数来衡量方程组的总残差,从给定的非线性代数方程组(NAE)的系统派生出一阶非线性常微分方程(ODE)的自然系统。迭代方程是通过对所得的ODE进行数值积分而获得的,而这些ODE不需要{偏导} F_i / {偏导} x_j的逆。新方法保留了同伦方法的优点,例如全局收敛,但是它不涉及雅可比矩阵逆的复杂计算。给出的数值示例证实了这种标量同伦方法(SHM)在发现残差小得多的真实解时非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号