...
首页> 外文期刊>Computer physics communications >Development of an explicit non-staggered scheme for solving three-dimensional Maxwell's equations
【24h】

Development of an explicit non-staggered scheme for solving three-dimensional Maxwell's equations

机译:求解三维麦克斯韦方程的显式非交错方案的开发

获取原文
获取原文并翻译 | 示例

摘要

An explicit finite-difference scheme for solving the three-dimensional Maxwell's equations in non staggered grids is presented. We aspire to obtain time-dependent solutions of the Faraday's and Ampere's equations and predict the electric and magnetic fields within the discrete zero-divergence context (or Gauss's law). The local conservation laws in Maxwell's equations are numerically preserved using the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme. Following the method of lines, the spatial derivative terms in the semi-discretized Faraday's and Ampere's equations are approximated theoretically to obtain a highly accurate numerical phase velocity. The proposed fourth order accurate space-centered finite difference scheme minimizes the discrepancy between the exact and numerical phase velocities. This minimization process considerably reduces the dispersion and anisotropy errors normally associated with finite difference time-domain methods. The computational efficiency of getting the same level of accuracy at less computing time and the ability of preserving the symplectic property have been numerically demonstrated through several test problems. (C) 2016 Published by Elsevier B.V.
机译:提出了一种求解非交错网格中三维麦克斯韦方程组的显式有限差分方案。我们希望获得法拉第和安培方程的时间相关解,并预测离散零散度上下文(或高斯定律)内的电场和磁场。使用显式二阶精确辛辛分割的Runge-Kutta时间格式在数值上保留麦克斯韦方程式中的局部守恒律。遵循直线法,理论上对半离散的Faraday方程和Ampere方程中的空间导数项进行了近似,以获得高度精确的数值相速度。所提出的四阶精确的以空间为中心的有限差分方案使精确和数字相位速度之间的差异最小化。这种最小化过程大大降低了通常与有限差分时域方法相关的色散和各向异性误差。通过几个测试问题已在数值上证明了在更少的计算时间上获得相同水平的准确度的计算效率以及保留辛性能的能力。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号