...
首页> 外文期刊>Computer physics communications >Performance analysis of the FDTD method applied to holographic volume gratings: Multi-core CPU versus GPU computing
【24h】

Performance analysis of the FDTD method applied to holographic volume gratings: Multi-core CPU versus GPU computing

机译:应用于全息体积光栅的FDTD方法的性能分析:多核CPU与GPU计算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The finite-difference time-domain method (FDTD) allows electromagnetic field distribution analysis as a function of time and space. The method is applied to analyze holographic volume gratings (HVGs) for the near-field distribution at optical wavelengths. Usually, this application requires the simulation of wide areas, which implies more memory and time processing. In this work, we propose a specific implementation of the FDTD method including several add-ons for a precise simulation of optical diffractive elements. Values in the near-field region are computed considering the illumination of the grating by means of a plane wave for different angles of incidence and including absorbing boundaries as well. We compare the results obtained by FDTD with those obtained using a matrix method (MM) applied to diffraction gratings. In addition, we have developed two optimized versions of the algorithm, for both CPU and GPU, in order to analyze the improvement of using the new NVIDIA Fermi GPU architecture versus highly tuned multi-core CPU as a function of the size simulation. In particular, the optimized CPU implementation takes advantage of the arithmetic and data transfer streaming SIMD (single instruction multiple data) extensions (SSE) included explicitly in the code and also of multi-threading by means of OpenMP directives. A good agreement between the results obtained using both FDTD and MM methods is obtained, thus validating our methodology. Moreover, the performance of the GPU is compared to the SSE+OpenMP CPU implementation, and it is quantitatively determined that a highly optimized CPU program can be competitive for a wider range of simulation sizes, whereas GPU computing becomes more powerful for large-scale simulations.
机译:时域有限差分法(FDTD)允许将电磁场分布分析作为时间和空间的函数。该方法用于分析全息体光栅(HVG)的近场分布在光波长处。通常,此应用程序需要模拟广域,这意味着需要更多的内存和更多的时间处理。在这项工作中,我们提出了FDTD方法的特定实现,其中包括用于精确模拟光学衍射元件的几个附加组件。考虑到不同入射角并包括吸收边界,借助于平面波对光栅的照明,来计算近场区域中的值。我们将通过FDTD获得的结果与使用应用于衍射光栅的矩阵方法(MM)获得的结果进行比较。此外,我们还针对CPU和GPU开发了两种算法的优化版本,以根据尺寸模拟功能分析使用新的NVIDIA Fermi GPU架构与高度可调的多核CPU相比的改进。特别地,优化的CPU实现利用了显式包含在代码中的算术和数据传输流式SIMD(单指令多数据)扩展(SSE),以及通过OpenMP指令实现的多线程。使用FDTD和MM方法获得的结果之间取得了很好的一致性,从而验证了我们的方法。此外,将GPU的性能与SSE + OpenMP CPU实施进行了比较,并定量确定了高度优化的CPU程序可以在更大范围的仿真大小中具有竞争力,而GPU计算对于大规模仿真则变得更加强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号