...
首页> 外文期刊>Computer physics communications >A basis-set based Fortran program to solve the Gross-Pitaevskii equation for dilute Bose gases in harmonic and anharmonic traps
【24h】

A basis-set based Fortran program to solve the Gross-Pitaevskii equation for dilute Bose gases in harmonic and anharmonic traps

机译:一个基于基集的Fortran程序,用于求解谐波和非谐阱中稀Bose气体的Gross-Pitaevskii方程

获取原文
获取原文并翻译 | 示例
           

摘要

Inhomogeneous boson systems, such as the dilute gases of integral spin atoms in low-temperature magnetic traps, are believed to be well described by the Gross-Pitaevskii equation (GPE). GPE is a nonlinear Schrodinger equation which describes the order parameter of such systems at the mean field level. In the present work, we describe a Fortran 90 computer program developed by us, which solves the GPE using a basis set expansion technique. In this technique, the condensate wave function (order parameter) is expanded in terms of the solutions of the simple-harmonic oscillator (SHO) characterizing the atomic trap. Additionally, the same approach is also used to solve the problems in which the trap is weakly anharmonic, and the anharmonic potential can be expressed as a polynomial in the position operators x, y, and z. The resulting eigen-value problem is solved iteratively using either the self-consistent-field (SCF) approach, or the imaginary time steepest-descent (SD) approach. Iterations can be initiated using either the simple-harmonic-oscillator ground state solution, or the Thomas-Fermi (TF) solution. It is found that for condensates containing up to a few hundred atoms, both approaches lead to rapid convergence. However, in the strong interaction limit of condensates containing thousands of atoms, it is the SD approach coupled with the TF starting orbitals, which leads to quick convergence. Our results for harmonic traps are also compared with those published by other authors using different numerical approaches, and excellent agreement is obtained. GPE is also solved for a few anharmonic potentials, and the influence of anharmonicity on the condensate is discussed. Additionally, the notion of Shannon entropy for the condensate wave function is defined and studied as a function of the number of particles in the trap. It is demonstrated numerically that the entropy increases with the particle number in a monotonic way.
机译:据信,Gross-Pitaevskii方程(GPE)可以很好地描述不均匀的玻色子系统,例如低温磁阱中整体自旋原子的稀气体。 GPE是一个非线性Schrodinger方程,描述了此类系统在平均场水平下的阶数参数。在当前的工作中,我们描述了我们开发的Fortran 90计算机程序,该程序使用基础集扩展技术解决了GPE。在该技术中,根据表征原子阱的简单谐波振荡器(SHO)的解,扩展了冷凝波函数(阶数参数)。另外,同样的方法也用于解决陷阱弱非谐的问题,并且非谐电势可以表示为位置算子x,y和z中的多项式。使用自洽场(SCF)方法或虚拟时间最速下降(SD)方法可以迭代地解决由此产生的特征值问题。可以使用简单谐波振荡器基态解决方案或Thomas-Fermi(TF)解决方案来启动迭代。发现对于包含多达几百个原子的冷凝物,两种方法都会导致快速收敛。然而,在包含数千个原子的冷凝物的强相互作用极限中,是SD方法与TF起始轨道相结合,导致快速收敛。我们还将谐波陷波器的结果与其他作者使用不同数值方法发表的结果进行了比较,并获得了很好的一致性。还解决了GPE的一些非谐电位,并讨论了非谐对冷凝物的影响。另外,凝结水波函数的香农熵概念被定义和研究为捕集阱中颗粒数量的函数。数值证明,熵随颗粒数单调增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号