...
首页> 外文期刊>Computer Modeling in Engineering & Sciences >Simulation of Hot Shape Rolling of Steel in Continuous Rolling Mill by Local Radial Basis Function Collocation Method
【24h】

Simulation of Hot Shape Rolling of Steel in Continuous Rolling Mill by Local Radial Basis Function Collocation Method

机译:局部径向基函数配置法模拟连轧机钢热轧

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this paper is to demonstrate the use of the novel Local Radial Basis Function Collocation Method (LRBFCM) [Sarler and Vertnik (2006)] in an industrial coupled thereto-mechanical problem of hot shape rolling of steel. The physical concept of such a large deformation problem is based on a two dimensional traveling slice model [Glowacki (2005)], which assumes deformation and heat flow only in the perpendicular direction to rolling. The solution is performed based on strong formulation. Elliptic Node Generation (ENG) is applied to reposition the nodes over a slice when necessary in order to sustain stability throughout the simulation. Coupled mechanical equilibrium steady Navier-Cauchy equations for a quasi-elastic material with temperature dependent material properties and the transient heat conduction equations are considered. The displacement and traction boundary conditions are assumed in the mechanical model and Dirichlet and Neumann boundary conditions in the thermal model, both specific for hot shape rolling. The solution procedure for mechanical model is based on local collocation on seven nodded influence domains with multiquadrics radial basis functions, augmented with the first order polynomials. Five nodded subdomains and explicit time-stepping are used in the thermal model. The elements of the thermomechanical LRBFCM model are tested on 3 different test cases: bending of a cantilever beam, compression and convective cooling. The results are compared with either t-EM or analytical solution. The LRBFCM results of hot shape rolling of steel for a continuous 5 stand rolling mill are presented for the case of rolling of a rectangular billet from initial dimension 80 mm x 95 mm to a circular bar with a diameter of 60 mm. The advantage of the meshless method is in accuracy and straightforward node generation that does not require any polygonisation. The paper presents one of the increasingly emerging examples of the industrial use of LRBFCM.
机译:本文的目的是论证新型局部径向基函数配置方法(LRBFCM)[Sarler and Vertnik(2006)]在与之相关的工业上热轧钢的机械问题中的应用。如此大的变形问题的物理概念是基于二维行进切片模型[Glowacki(2005)],该模型仅在垂直于轧制方向上假设变形和热流。该解决方案基于强大的配方。椭圆节点生成(ENG)用于在必要时在切片上重新放置节点,以在整个仿真过程中保持稳定性。考虑了具有随温度变化的材料特性的准弹性材料的耦合机械平衡稳态Navier-Cauchy方程和瞬态热传导方程。力学模型中假设了位移和牵引力边界条件,而热模型中则假设了Dirichlet和Neumann边界条件,这两个条件都特定于热轧。力学模型的求解过程基于具有七阶径向基函数的七个点状影响域上的局部配置,并用一阶多项式进行了扩充。在热模型中使用了五个点头子域和明确的时间步长。在3个不同的测试案例中对热机械LRBFCM模型的元素进行了测试:悬臂梁的弯曲,压缩和对流冷却。将结果与t-EM或分析解决方案进行比较。对于将矩形坯料从初始尺寸80 mm x 95 mm轧制成直径60 mm的圆钢的情况,给出了连续5机架轧机的钢热成型轧制的LRBFCM结果。无网格方法的优点是精度高,节点生成简单,不需要任何多边形化。本文介绍了LRBFCM的工业用途的新兴例子之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号