...
首页> 外文期刊>Computational & theoretical chemistry >Structural and spectroscopic properties of Ir(III) complexes with phenylpyridine ligands: Absorption spectra without and with spin-orbit-coupling
【24h】

Structural and spectroscopic properties of Ir(III) complexes with phenylpyridine ligands: Absorption spectra without and with spin-orbit-coupling

机译:具有苯基吡啶配体的Ir(III)配合物的结构和光谱性质:无自旋轨道耦合和有自旋轨道耦合的吸收光谱

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The absorption spectra of [Ir(ppy)_3] and [Ir(ppy)_2(CO)Cl)] have been calculated by means of TD-DFT methods based on optimized structures, including spin-orbit coupling. Whereas spin-orbit effects modify the spectrum of the tri-substituted phenylpyridine reference complex they do not change significantly the absorption properties of the carbonyl/halide substituted complexes. The absorption spectra have been assigned on the basis of the spin-orbit states and the emissive properties of the complexes have been interprated from the singlet/triplet mixing and spin-orbit splitting of the lowest S_1 singlet and T_1 triplet states. The theoretical results agree rather well with the experimental data available for this class of complexes, reproduce the zero-field splittings observed for the T_1 states at low-temperature and give a new interpretation of the emissive properties. The presence of low-lying mixed XLCT/MLCT states of weak intensities in [Ir(ppy)_2(CO)Cl)] limits the spin-orbit effects as compared to [Ir(ppy)3], the spectrum of which is characterized by nearly pure MLCT states in the visible energy domain.
机译:[Ir(ppy)_3]和[Ir(ppy)_2(CO)Cl)的吸收光谱已通过TD-DFT方法基于包括自旋轨道耦合在内的优化结构进行了计算。尽管自旋轨道效应改变了三取代的苯基吡啶参考配合物的光谱,但它们并未显着改变羰基/卤化物取代的配合物的吸收性质。已根据自旋轨道状态分配了吸收光谱,并从最低的S_1单重态和T_1三重态的单重态/三重态混合和自旋轨道分裂中获得了复合物的发射性质。理论结果与此类配合物的实验数据非常吻合,再现了在低温下观察到的T_1态的零场分裂,并给出了发射性质的新解释。与[Ir(ppy)3]相比,[Ir(ppy)_2(CO)Cl)中弱强度的低洼混合XLCT / MLCT状态的存在限制了自旋轨道效应在可见光能域中几乎是纯MLCT状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号