...
首页> 外文期刊>Biomacromolecules >Poly(carboxybetaine methacrylamide)-Modified Nanoparticles: A Model System for Studying the Effect of Chain Chemistry on Film Properties, Adsorbed Protein Conformation, and Clot Formation Kinetics
【24h】

Poly(carboxybetaine methacrylamide)-Modified Nanoparticles: A Model System for Studying the Effect of Chain Chemistry on Film Properties, Adsorbed Protein Conformation, and Clot Formation Kinetics

机译:聚(羧基甜菜碱甲基丙烯酰胺)修饰的纳米颗粒:用于研究链化学对膜性能,吸附的蛋白质构象和凝块形成动力学的影响的模型系统

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nonfouling polymer architectures are considered important to the successful implementation of many biomaterials. It is thought that how these polymers induce conformational changes in proteins upon adsorption may dictate the fate of the device being utilized. Herein, oxidized silicon nanoparticles (SiNP) were modified with various forms of poly(carboxybetaine methacrylamide) (PCBMA) for the express purpose of understanding how polymer chemistry affects film hydration, adsorbed protein conformation, and clot formation kinetics. To this end, carboxybetaine monomers differing in intercharge separating spacer groups were synthesized, and nitroxide-mediated free radical polymerization (NMP) was conducted using alkoxyamine initiators with hydrophobic (TEMPO) and hydrophilic (β-phosphonate) terminal groups. The physical properties (surface composition, thickness, grafting density, etc.) of the resulting polymer-SiNP conjugates were quantified using several techniques, including Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The effect of spacer group on the surface charge density was determined using zeta potential measurements. Three proteins, viz., lysozyme, bovine α-lactalbumin, and human serum albumin, were used to evaluate the effect film properties (charge, hydration, end-group) have on adsorbed protein conformation, as determined by circular dichroism (CD), fluorescence spectroscopy, and fluorescence quenching techniques. Hemocompatibility of these surfaces was observed by measuring clot formation kinetics using the plasma recalcification time assay. It was found that chain chemistry, as opposed to end-group chemistry, was a major determiner for water structure, adsorbed protein conformation, and clotting kinetics, It is thought that the systematic evaluation of how both chain (internal) and end-group (external) polymer properties affect film hydration, protein conformation, and clot formation will provide valuable insight that can be applied to all engineered surfaces for biomedical applications.
机译:不结垢的聚合物结构被认为对成功地实现许多生物材料很重要。人们认为,这些聚合物如何在吸附时诱导蛋白质构象变化可能决定着所使用装置的命运。本文中,氧化硅纳米颗粒(SiNP)用各种形式的聚(羧基甜菜碱甲基丙烯酰胺)(PCBMA)进行了修饰,目的是理解聚合物化学如何影响膜水化,吸附的蛋白质构象和血块形成动力学。为此,合成了电荷间分离间隔基团不同的羧基甜菜碱单体,并使用具有疏水性(TEMPO)和亲水性(β-膦酸酯)端基的烷氧基胺引发剂进行了氮氧化物介导的自由基聚合(NMP)。使用多种技术对所得聚合物-SiNP共轭物的物理性质(表面成分,厚度,接枝密度等)进行了定量,包括傅立叶变换红外(FTIR)光谱,动态光散射(DLS)和热重分析(TGA) 。使用ζ电势测量来确定间隔基对表面电荷密度的影响。三种蛋白质,即溶菌酶,牛α-乳清蛋白和人血清白蛋白,用于评估薄膜特性(电荷,水合作用,端基)对吸附的蛋白质构象的影响(通过圆二色性(CD)确定),荧光光谱和荧光猝灭技术。通过使用血浆重钙化时间测定法测量血块形成动力学来观察这些表面的血液相容性。已发现,与端基化学相反,链化学是决定水结构,吸附的蛋白质构象和凝血动力学的主要决定因素。据认为,对链(内部)和端基(外部)聚合物特性会影响薄膜的水合作用,蛋白质构象和血块形成,这将提供有价值的见解,可将其应用于生物医学应用的所有工程表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号