首页> 外文期刊>Biomacromolecules >Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking
【24h】

Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking

机译:通过控制物理和化学交联,增强纤维素纳米晶体-聚(甲基丙烯酸低聚乙二醇酯)纳米复合水凝胶的机械性能

获取原文
获取原文并翻译 | 示例
           

摘要

While injectable hydrogels have several advantages in the context of biomedical use, their generally weak mechanical properties often limit their applications. Herein, we describe in situ-gelling nanocomposite hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) and rigid rod-like cellulose nanocrystals (CNCs) that can overcome this challenge. By physically incorporating CNCs into hydrazone cross-linked POEGMA hydrogels, macroscopic properties including gelation rate, swelling kinetics, mechanical properties, and hydrogel stability can be readily tailored. Strong adsorption of aldehyde- and hydrazide-modified POEGMA precursor polymers onto the surface of CNCs promotes uniform dispersion of CNCs within the hydrogel, imparts physical cross-links throughout the network, and significantly improves mechanical strength overall, as demonstrated by quartz crystal microbalance gravimetry and rheometry. When POEGMA hydrogels containing mixtures of long and short ethylene oxide side chain precursor polymers were prepared, transmission electron microscopy reveals that phase segregation occurs with CNCs hypothesized to preferentially locate within the stronger adsorbing short side chain polymer domains. Incorporating as little as 5 wt % CNCs results in dramatic enhancements in mechanical properties (up to 35-fold increases in storage modulus) coupled with faster gelation rates, decreased swelling ratios, and increased stability versus hydrolysis. Furthermore, cell viability can be maintained within 3D culture using these hydrogels independent of the CNC content. These properties collectively make POEGMA-CNC nanocomposite hydrogels of potential interest for various biomedical applications including tissue engineering scaffolds for stiffer tissues or platforms for cell growth.
机译:尽管可注射水凝胶在生物医学应用方面具有多个优势,但它们通常较弱的机械性能通常会限制其应用。在这里,我们描述了基于聚(低聚乙二醇甲基丙烯酸甲酯)(POEGMA)和刚性棒状纤维素纳米晶体(CNC)的原位胶凝纳米复合水凝胶,可以克服这一挑战。通过将CNCs物理结合到交联的POEGMA水凝胶中,可以轻松地定制宏观特性,包括胶凝速率,溶胀动力学,机械特性和水凝胶稳定性。醛和酰肼改性的POEGMA前体聚合物在CNCs表面上的强吸附性可促进CNCs在水凝胶中的均匀分散,在整个网络中赋予物理交联,并显着提高整体机械强度,如石英晶体微量天平重量法和流变仪。当制备包含长和短环氧乙烷侧链前体聚合物混合物的POEGMA水凝胶时,透射电子显微镜显示发生相分离,假设CNCs优先位于较强吸附的短侧链聚合物域内。掺入低至5 wt%的CNCs可以显着提高机械性能(最大增加35倍的储能模量),并具有更快的胶凝速率,降低的溶胀率以及相对于水解的稳定性。此外,使用这些水凝胶可在3D培养物中维持细胞活力,而与CNC含量无关。这些特性共同使POEGMA-CNC纳米复合水凝胶对各种生物医学应用具有潜在的兴趣,这些生物凝胶包括用于较硬组织的组织工程支架或用于细胞生长的平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号