首页> 外文期刊>Complexity >Life, Information, Entropy, and Time
【24h】

Life, Information, Entropy, and Time

机译:生命,信息,熵和时间

获取原文
获取原文并翻译 | 示例
       

摘要

Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or "the meaning of the message," adds no thermodynamic burden over and above costs arising from, coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences, (i) Information transmission through either pathway has thermodynamic components associated, with data storage and transmission, (ii) The semantic content adds no additional thermodynamic cost. (Hi) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ~4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial, complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the "mutation" of ideas therein, and the "conversations" of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the 6lan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessaiy linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ~4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochetnical
机译:试图理解如何将信息内容包括在生物圈能量通量的核算中,得出的结论是,在信息传输中,一个组成部分,语义内容或“消息的含义”不会增加热力学负担。除了编码,传输和翻译产生的费用。在生物学中,语义内容具有两个主要作用。对于所有生命形式,DNA中编码的基因型的信息都指定了表型,因此指定了通过达尔文进化机制针对现实世界进行测试的生物。对于人类而言,通过语言和类似抽象进行的交流为语义继承提供了另一种超表型载体,它支持了文明所围绕的文化遗产。以下三个假设为讨论一些主题的基础提供了基础,这些主题展示了一些重要的结果:(i)通过任一途径进行的信息传输都具有与数据存储和传输相关的热力学成分,(ii)语义内容不会增加额外的热力学成本。 (Hi)对于所有语义交换,意义只能通过翻译和解释来访问,并且仅在上下文中具有价值。 (1)对于语义继承的两种途径,翻译和复制机制都是不完善的。结果,这两种途径都因选择而发生突变并承受进化压力。认识到语义内容是一个共同的组成部分,可以理解基因和模因之间的关系,并重新制定通用达尔文主义。 (2)生命的涌现特性取决于语义内容的处理。通过空间和时间的组合可能性,翻译步骤允许复杂性的扩大。扩增取决于蛋白质的3D相互作用特异性增加了复杂性的潜力,还取决于通过进化选择有用的变异体。最初的解释步骤包括蛋白质合成,分子识别和促进结构和功能作用的催化潜力。通过在时间维度上日益复杂的交互作用,扩展了组合可能性。 (3)所有生物都表现出表明对时间或慢性病认识的行为。大约40亿年的生物进化已经形成了各种形式,这些形式在感觉适应方面越来越复杂。这与时间序列范围的扩大以及组合复杂性的增加有关。 (4)现代人类表型的发展和通过语言交流的能力导致档案存储的发展,并发明了允许现代文明发展的基本技能,制度和机制。在超表型水平上的组合放大源于语法,语法,数字的发明,以及随后在书写,算法等方面抽象化的发展。人脑的翻译机制,其中思想的“变异”以及我们社会交往中的“对话”已经使一组有限的符号描述符演变成指数级扩展的语义遗产。 (5)以上三个假设提出了有趣的认识论问题。要理解诸如二元论,6lan命题,科学中的假设地位,模因,意识的本质,语义加工在社会生存中的作用以及波普尔的三个世界等主题,就需要认识到一个非实质性的组成部分。通过认识到语义内容和物理机制之间的必然联系,我们可以将这些长期存在的问题纳入现实哲学的框架。有人提出,在波普尔之后,生物圈的约40亿年的演化代表了对物理性质的探索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号