首页> 外文期刊>Complexity >The Disaster of Central Control
【24h】

The Disaster of Central Control

机译:中央控制的灾难

获取原文
获取原文并翻译 | 示例
       

摘要

It is commonplace to say that central control of large complex entities is doomed to fail. We have numerous examples from economies and societies of the past and the present demonstrating inefficiency when the systems exceed a certain size. In the old days, wise emperors were well aware of the problem and answered appropriately by the principle of divide et impera. Nature seems to have an elegant solution the problem too: Modular structure and partial autonomy of modules. The best example is the multicellular organism where the individual cell retains as much autonomy in metabolism as can be tolerated without endangering the whole system: A little more independence of somatic cells, for example, leads to tumor formation. Efficient division of labor is observed in bacterial cells too. No wonder I have thought that we can always learn from biology how to manage successfully the most sophisticated situations and how to handle and control complexity. It was a shocking experience therefore when I read a recent preprint and previous articles by John Mattick and his colleagues [1-3]. They present a plausible interpretation of the limitation in bacterial genome sizes based on DNA sequences: The number of genes in prokaryotes is bounded by an unaffordable regulatory overhead in genomes that are too large. This view is supported by an empirical fit of a power law to the data derived from some 90 fully sequenced prokaryotic genomes. The number of regulatory genes grows approximately with the square of the total number of genes, n_r = 1.63 * 10~(-5)·n~(1.96) ≈ 1.2 * 10~(-5)·n~2, where n_r and n are the numbers of regulatory genes and all genes, respectively. Thus, complete regulation of ribosomal protein synthesis'-when centrally organized on the DNA level in the spirit of the elegant operon mechanism as discovered by Jaques Monod, Francois Jacob, and Andre Lwow-falls into an inefficiency trap when genomes become too large. The guess is that the critical genome size for prokaryotes is in the range of 10,000 genes and indeed, this appears to be the size limit of bacterial genomes.
机译:常见的说法是大型复杂实体的中央控制注定要失败。从过去和现在的经济和社会中,我们有无数的例子表明,当系统超过一定规模时,效率低下。在过去,明智的皇帝很清楚这个问题,并根据“分而治之”的原则进行了适当的回答。大自然似乎也可以很好地解决问题:模块结构和模块的部分自治。最好的例子是多细胞生物,其中单个细胞在不损害整个系统的情况下在代谢中保留了尽可能多的自主权:例如,体细胞的更多独立性会导致肿瘤形成。在细菌细胞中也观察到有效的分工。难怪我以为我们总能从生物学中学到如何成功地处理最复杂的情​​况以及如何处理和控制复杂性。因此,当我阅读John Mattick及其同事的最新预印本和以前的文章时,这是一次令人震惊的经历[1-3]。他们对基于DNA序列的细菌基因组大小的限制提出了一个合理的解释:原核生物中的基因数量受到太大的基因组中无法承受的调节开销的限制。幂律对约90个完全测序的原核生物基因组数据的经验拟合证明了这一观点。调节基因的数目大约与基因总数的平方成正比,n_r = 1.63 * 10〜(-5)·n〜(1.96)≈1.2 * 10〜(-5)·n〜2,其中n_r和n分别是调节基因和所有基因的数目。因此,当Jaques Monod,Francois Jacob和Andre Lwow发现雅致的操纵子机制时,核糖体蛋白合成的完全调控就集中在DNA层面,当基因组变得太大时,陷入了效率低下的陷阱。推测是,原核生物的关键基因组大小在10,000个基因范围内,实际上,这似乎是细菌基因组的大小限制。

著录项

  • 来源
    《Complexity》 |2004年第4期|共2页
  • 作者

    Peter Schuster;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高等数学;
  • 关键词

  • 入库时间 2022-08-18 09:38:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号