首页> 外文期刊>Colloids and Surfaces, B. Biointerfaces >Exploiting fluorescence resonance energy transfer to probe structural changes in a macromolecule during adsorption and incorporation into a growing biomineral crystal
【24h】

Exploiting fluorescence resonance energy transfer to probe structural changes in a macromolecule during adsorption and incorporation into a growing biomineral crystal

机译:利用荧光共振能量转移来探测大分子在吸附过程中的结构变化,并结合到正在生长的生物矿物晶体中

获取原文
获取原文并翻译 | 示例
           

摘要

The growth of natural biominerals is often tightly regulated by surface adsorption and subsequent incorporation of proteins into the crystal structure. Understanding how macromolecules intercalate into inorganic crystal lattices and how incorporation affects protein structure is crucial to learning how to engineer biomimetic materials with advanced properties, yet knowledge about the molecular-level interactions between organic guests and inorganic hosts remains sparse. Here we have used fluorescence resonance energy transfer (FRET) to probe conformational changes of a macromolecule as it adsorbs to, and becomes incorporated within, a biomineral crystal. Calcium oxalate monohydrate (COM) was used as a model due to its large size and kinetic stability under a wide range of pH values. Since the conformation of the extracellular matrix protein fibronectin (Fn) is highly sensitive to local ion concentrations, major conformational changes can be observed by FRET, as Fn senses and responds to varying local ionic conditions. When transferred from a physiological buffer to a supersaturated Solution, Fn's crossed-over dimeric arms separate, indicating a weakening of the electrostatic interactions which otherwise stabilize the compact conformation of the protein. Fn returns to a more compact state when binding to the flat (-101) surface of the crystal, suggesting that Fn might sense a zone of ion depletion right at the interface of the growing crystal. As the crystal begins to grow around the absorbed protein, the dimeric Fn arms separate again, potentially driven by interactions with the newly formed charged step edges forming around it during the embedding process. FRET thus reveals for the first time how local changes in the electrostatic environment during the growth of a biomineral can cause major alterations in protein conformation. The insights derived using FRET and atomic force microscopy (AFM) could stimulate novel ways to tailor and tune the properties of organic-inorganic composites by exploiting dynamically changing electrostatic guest-host interactions.
机译:天然生物矿物质的生长通常受到表面吸附以及随后将蛋白质掺入晶体结构的严格控制。了解大分子如何嵌入无机晶格以及掺入如何影响蛋白质结构,对于学习如何设计具有先进性能的仿生材料至关重要,而对有机客体与无机主体之间分子水平相互作用的了解仍然很少。在这里,我们已经使用荧光共振能量转移(FRET)来探测大分子在生物矿物质晶体中吸收并结合到其中时的构象变化。由于草酸钙一水合物(COM)具有较大的尺寸和在宽pH值范围内的动力学稳定性,因此被用作模型。由于细胞外基质蛋白纤连蛋白(Fn)的构象对局部离子浓度高度敏感,因此当Fn感知并响应变化的局部离子条件时,FRET可以观察到主要构象变化。当从生理缓冲液转移到过饱和溶液中时,Fn的交叉二聚臂分开,表明静电相互作用的减弱,从而使蛋白质的紧密构象稳定。当Fn结合到晶体的平坦(-101)表面时,Fn返回到更紧凑的状态,这表明Fn可能会在生长的晶体的界面处感应到离子耗尽区域。随着晶体开始在吸收的蛋白质周围生长,二聚体Fn臂再次分离,这可能是由于在包埋过程中与在其周围形成的新形成的带电台阶边缘的相互作用所驱动。因此,FRET首次揭示了生物矿物质生长过程中静电环境的局部变化如何引起蛋白质构象的重大改变。利用FRET和原子力显微镜(AFM)得出的见解可以激发通过利用动态变化的静电客体-主体相互作用来定制和调整有机-无机复合材料特性的新颖方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号