首页> 外文期刊>Colloids and Surfaces, B. Biointerfaces >Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip
【24h】

Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip

机译:使用微芯片上的表面等离振子共振成像检测DNA修饰的金纳米粒子与DNA修饰的平坦金表面之间的非交联相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Gold nanoparticles (GNPs) with fully matched DNA duplexes on their surfaces aggregate together without molecular cross-linking at high salt concentrations. The mechanism of this non-cross-linking (NCL) interaction has been elusive. In this paper, NCL interaction between duplex-modified GNPs and a duplex-modified flat gold surface is presented for the first time. This new experimental platform has enabled us to study the NCL interaction between duplexes with different sequences. We immobilized 15-base single-stranded (ss) DNA onto the surfaces of GNPs with a diameter of 40 nm and onto a flat gold substrate. The GNPs were hybridized with 15-base ssDNA at a low salt concentration. A microfluidic device was used for simultaneous delivery of the following three components onto the gold substrate: the duplex-modified GNPs, 15-base ssDNA to be hybridized onto the substrate, and NaCl at a high concentration. Adsorption of the GNPs onto the substrate was monitored using surface plasmon resonance imaging. When the GNPs and the substrate had an identical sequence, the adsorption behavior was analogous to the aggregation behavior of GNPs in test tubes. Furthermore, we investigated 12 cases in which the GNPs and the substrate had completely different sequences, and obtained results suggesting that the NCL attraction force primarily depends on the terminal base pairs of the duplexes. This means that the main mechanism of the NCL interaction is likely to be inter-duplex base stacking rather than formation of Holliday junctions. (c) 2007 Elsevier B.V. All rights reserved.
机译:在表面上具有完全匹配的DNA双链体的金纳米颗粒(GNP)聚集在一起,而在高盐浓度下没有分子交联。这种非交联(NCL)相互作用的机制一直难以捉摸。在本文中,首次提出了双链修饰的GNP与双链修饰的平坦金表面之间的NCL相互作用。这个新的实验平台使我们能够研究具有不同序列的双链体之间的NCL相互作用。我们将15个碱基的单链(ss)DNA固定在直径为40 nm的GNP表面和平坦的金底物上。将GNP与低盐浓度的15个碱基的ssDNA杂交。使用微流体装置将以下三种组分同时递送到金基质上:双链修饰的GNP,待杂交到基质上的15个碱基的ssDNA以及高浓度的NaCl。使用表面等离振子共振成像监测GNP在基质上的吸附。当GNP和底物具有相同的序列时,吸附行为类似于GNP在试管中的聚集行为。此外,我们调查了GNP和底物具有完全不同序列的12种情况,并获得的结果表明NCL吸引力主要取决于双链体的末端碱基对。这意味着NCL相互作用的主要机制可能是双链体之间的碱基堆积,而不是形成霍利迪结。 (c)2007 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号