...
首页> 外文期刊>Colloids and Surfaces, A. Physicochemical and Engineering Aspects >Control of the chemical and physical behaviour of silicon surfaces for enhancing the transition from hydrophilic to superhydrophobic surfaces
【24h】

Control of the chemical and physical behaviour of silicon surfaces for enhancing the transition from hydrophilic to superhydrophobic surfaces

机译:控制硅表面的化学和物理行为,以增强从亲水表面到超疏水表面的过渡

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we present a convenient and simple experimental approach based on the modification of chemical and topographical state of silicon surfaces for enhancing the transition from hydrophilic to superhydrophobic surfaces. Using the concept of self assembly technique and chemical deposition process, we have constructed two microstructured silicon substrates: hydrophilic surface (with high surface density of amine groups) and superhydrophobic surface (having long carbon chains moieties). In the first case (amine-surface -NH_2), amine functionalized silica particles were chemically immobilized on cleaned surface by nucleophilic addition between epoxy (or carboxyl) and amine groups. SEM images of the resulting substrate indicate that the roughness become very important and a microstructured surface (honeycomb-like structure) has been observed when carboxyl-silanes CPS was used as coupling agent. Using Moon's method, we found a higher surface density of amino groups which reaches 25 amino groups by 100?~2 relatively higher than the aminosilylated surface (~3 amino groups by 100?~2). Of course, this subsequent change could be explained by the fact that an increasing surface area (high roughness) enhances surface density. While, in the second case (alkyl surface-[CH_2]_(18)), silica particles have been chemically attached onto aminosilylated surface by Stober's method in situ. In this case, we attempt that the ammonia reactive catalyze the Stober reaction directly on the surface of the substrate. Deposited silica particles films were then hydrophobized by chemisorption of OTS molecules by SAMs technique. Using contact angle measurements, we found a CA value of about 170° and a strong superhydrophobic property of the substrate has been obtained. This behaviour could be explained by the contribution of two factors: chemical composition and geometric microstructure. Our result demonstrates the possibility to construct covalent structures with functionalized silica particles and promote their application in other fields like biosensors, optoelectronic, wettability control devices.
机译:在这项工作中,我们提出了一种方便而简单的实验方法,该方法基于硅表面化学和表面形貌的改性,以增强从亲水性表面到超疏水性表面的过渡。使用自组装技术和化学沉积工艺的概念,我们构造了两种微结构化的硅基板:亲水性表面(具有高胺基表面密度)和超疏水性表面(具有长碳链部分)。在第一种情况下(胺表面-NH_2),通过环氧基(或羧基)和胺基之间的亲核加成将胺官能化的二氧化硅颗粒化学固定在清洁的表面上。当将羧基硅烷CPS用作偶联剂时,所得基材的SEM图像表明粗糙度变得非常重要,并且已经观察到微结构化表面(蜂窝状结构)。使用穆恩法,我们发现氨基的表面密度较高,达到100?〜2时达到25个氨基,比氨基甲硅烷基化的表面要高(100?〜2到3个氨基)。当然,可以通过增加表面积(高粗糙度)增强表面密度这一事实来解释此后续更改。而在第二种情况下(烷基表面-[CH_2] _(18)),二氧化硅颗粒已经通过斯托伯方法原位化学附着在氨基甲硅烷基化的表面上。在这种情况下,我们尝试使氨直接在基材表面上进行Stober反应。然后通过SAMs技术对OTS分子进行化学吸附,对沉积的二氧化硅颗粒薄膜进行疏水化处理。使用接触角测量,我们发现CA值约为170°,并且已经获得了基材的强超疏水性。可以通过两个因素的贡献来解释这种行为:化学成分和几何微观结构。我们的结果证明了用功能化的二氧化硅颗粒构建共价结构并促进其在生物传感器,光电,润湿性控制设备等其他领域的应用的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号