...
首页> 外文期刊>Colloids and Surfaces, A. Physicochemical and Engineering Aspects >An insight into the surface properties of calcined kaolinitic clays: The grinding effect
【24h】

An insight into the surface properties of calcined kaolinitic clays: The grinding effect

机译:洞悉煅烧高岭土的表面特性:研磨效果

获取原文
获取原文并翻译 | 示例

摘要

The present work aimed characterizing in a systematic way the surface of metakaolinitic materials produced by calcination of a kaolinitic clay at different temperatures and to study the effect of grinding on the surface properties of metakaolinitic materials. Using X-ray photoelectron spectroscopy, it was found for all materials a Si/Al atomic ratio close to 1, confirming the presence of the 1:1 clay structure. By inverse gas chromatography, an increase of the Lewis basic properties of the surfaces of metakaolinitic materials in comparison to the original clay was found, which was due to the condensation of hydroxyl groups in the structure of the clay. The grinding of the metakaolinitic materials afforded a decrease of the dispersive component of the surface energy (γ_s~d) as well as an increase of the specific interaction with sterically hindered molecules, caused by the diminishing of the materials surface nanoroughness. The Lewis basic properties of the materials surface also increased with grinding. Noticeably, for all studied materials a good inverse relation could be found between the γ_s~d and the specific interaction of trichloromethane(but not with dichloromethane), showing the importance of surface nanoroughness on the adsorption process of bulky molecules.
机译:本工作旨在系统地表征在不同温度下煅烧高岭土所产生的偏高岭土材料的表面,并研究研磨对偏高岭土材料表面性能的影响。使用X射线光电子能谱,发现所有材料的Si / Al原子比均接近1,证实存在1:1粘土结构。通过反相气相色谱法,发现与原始粘土相比,偏高岭土材料表面的路易斯基本性能有所提高,这是由于羟基在粘土结构中的缩合所致。偏高岭土材料的研磨使表面能的分散成分(γ_s〜d)降低,并且由于材料表面纳米粗糙度的降低,与位阻分子的比相互作用增加。材料表面的路易斯基本性质也随研磨而增加。值得注意的是,对于所有研究的材料,γ_s_d与三氯甲烷(但不与二氯甲烷)的特定相互作用之间都存在良好的反比关系,这表明表面纳米粗糙度对大分子吸附过程的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号