...
首页> 外文期刊>Biophysical Journal >In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy.
【24h】

In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy.

机译:使用三次谐波显微镜在脊椎动物中枢神经系统中对髓磷脂的体内成像。

获取原文
获取原文并翻译 | 示例
           

摘要

Loss of myelin in the central nervous system (CNS) leads to debilitating neurological deficits. High-resolution optical imaging of myelin in the CNS of animal models is limited by a lack of in vivo myelin labeling strategies. We demonstrated that third harmonic generation (THG) microscopy-a coherent, nonlinear, dye-free imaging modality-provides micrometer resolution imaging of myelin in the mouse CNS. In fixed tissue, we found that THG signals arose from white matter tracts and were colocalized with two-photon excited fluorescence (2PEF) from a myelin-specific dye. In vivo, we used simultaneous THG and 2PEF imaging of the mouse spinal cord to resolve myelin sheaths surrounding individual fluorescently-labeled axons, and followed myelin disruption after spinal cord injury. Finally, we suggest optical mechanisms that underlie the myelin specificity of THG. These results establish THG microscopy as an ideal tool for the study of myelin loss and recovery.
机译:中枢神经系统(CNS)中髓磷脂的丢失会导致神经衰弱。动物模型中枢神经系统中髓磷脂的高分辨率光学成像受到缺乏体内髓磷脂标记策略的限制。我们证明了三次谐波生成(THG)显微镜(一种相干,非线性,无染料的成像方式)可为小鼠CNS中的髓磷脂提供微米级的分辨率成像。在固定的组织中,我们发现THG信号来自白质束,并与髓鞘特异性染料的双光子激发荧光(2PEF)共定位。在体内,我们使用小鼠脊髓的THG和2PEF同步成像来解决单个荧光标记轴突周围的髓鞘,并在脊髓损伤后破坏髓鞘。最后,我们提出了THG髓鞘特异性基础的光学机制。这些结果使THG显微镜成为研究髓磷脂丢失和恢复的理想工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号