首页> 外文期刊>Comparative biochemistry and physiology. Toxicology & pharmacology: CBP >Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver [Review]
【24h】

Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver [Review]

机译:将急性毒性的生物配体模型扩展到暴露于银的虹鳟鱼(Oncorhynchus mykiss)生存时间的基于生理的模型[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

Chemical speciation controls the bioavailability and toxicity of metals in aquatic systems and regulatory agencies are recognizing this as they develop updated water quality criteria (WQC) for metals. The factors that affect bioavailability may be quantitatively evaluated with the biotic ligand model (BLM). Within the context of the BLM framework, the 'biotic ligand' is the site where metal binding results in the manifestation of a toxic effect. While the BLM does account for the speciation and complexation of dissolved metal in solution, and competition among the free metal ion and other cations for binding sites at the biotic ligand, it does not explicitly consider either the physiological effects of metals on aquatic organisms, or the direct effect of water chemistry parameters such as pH, Ca2+ and Na+ on the physiological state of the organism. Here, a physiologically-based model of survival time is described. In addition to incorporating the effects of water chemistry on metal availability to the organism, via the BLM, it also considers the interaction of water chemistry on the physiological condition of the organism, independent of its effect on metal availability. At the same time it explicitly considers the degree of interaction of these factors with the organism and how this affects the rate at which cumulative damage occurs. An example application of the model to toxicity data for rainbow trout exposed to silver is presented to illustrate how this framework may be used to predict survival time for alternative exposure durations. The sodium balance model (SBM) that is described herein, a specific application of a more generic ion balance model (IBM) framework, adds a new physiological dimension to the previously developed BLM. As such it also necessarily adds another layer of complexity to this already useful predictive framework. While the demonstrated capability of the SBM to predict effects in relation to exposure duration is a useful feature of this mechanistically-based framework, it is envisioned that, with suitable refinements, it may also have utility in other areas of toxicological and regulatory interest. Such areas include the analysis of time variable exposure conditions, residual after-effects of exposure to metals, acclimation, chronic toxicity and species and genus sensitivity. Each of these is of potential utility to longer-term ongoing efforts to develop and refine WQC for metals. (C) 2002 Elsevier Science Inc. All rights reserved. [References: 114]
机译:化学形态控制着金属在水生系统中的生物利用度和毒性,管理机构在制定金属的最新水质标准(WQC)时已经意识到这一点。可以使用生物配体模型(BLM)定量评估影响生物利用度的因素。在BLM框架内,“生物配体”是金属结合导致毒性作用表现的部位。虽然BLM确实考虑了溶液中溶解金属的形成和络合,以及自由金属离子和其他阳离子之间竞争生物配体上结合位点的竞争,但BLM并未明确考虑金属对水生生物的生理影响或pH,Ca2 +和Na +等水化学参数对生物体生理状态的直接影响。在此,描述了基于生理的生存时间模型。除了通过BLM结合水化学对生物体金属利用率的影响外,它还考虑了水化学与生物体生理状况之间的相互作用,而不受其对金属利用率的影响。同时,它明确考虑了这些因素与生物体的相互作用程度以及这如何影响累积损伤发生的速率。展示了该模型在暴露于银的虹鳟鱼毒性数据中的示例应用,以说明该框架如何用于预测替代暴露时间的生存时间。本文所述的钠平衡模型(SBM)是更通用的离子平衡模型(IBM)框架的特定应用,它为先前开发的BLM添加了新的生理维度。这样,它也必定会给已经有用的预测框架增加另一层复杂性。虽然SBM预测的与暴露持续时间有关的影响的能力是该基于机械的框架的有用功能,但可以预见的是,通过适当的改进,它还可以在毒理学和法规关注的其他领域使用。这些领域包括时变暴露条件的分析,金属暴露的残留后效,适应,慢性毒性以及物种和属的敏感性。这些都可能对开发和完善金属的WQC的长期持续努力具有潜在的实用性。 (C)2002 Elsevier Science Inc.保留所有权利。 [参考:114]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号