首页> 外文期刊>Biophysical Journal >Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks.
【24h】

Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks.

机译:组织特异性数学模型的慢波夹带在野生型和5-HT(2B)基因敲除小鼠与Cajal网络间质细胞的改变。

获取原文
获取原文并翻译 | 示例
           

摘要

Gastrointestinal slow waves are generated within networks of interstitial cells of Cajal (ICCs). In the intact tissue, slow waves are entrained to neighboring ICCs with higher intrinsic frequencies, leading to active propagation of slow waves. Degradation of ICC networks in humans is associated with motility disorders; however, the pathophysiological mechanisms of this relationship are uncertain. A recently developed biophysically based mathematical model of ICC was adopted and updated to simulate entrainment of slow waves. Simulated slow wave propagation was successfully entrained in a one-dimensional model, which contained a gradient of intrinsic frequencies. Slow wave propagation was then simulated in tissue models which contained a realistic two-dimensional microstructure of the myenteric ICC networks translated from wild-type (WT) and 5-HT(2B) knockout (degraded) mouse jejunum. The results showed that the peak current density in the WT model was 0.49 muA mm(-2) higher than the 5-HT(2B) knockout model, and the intracellular Ca(2+) density after 400 ms was 0.26 mM mm(-2) higher in the WT model. In conclusion, tissue-specific models of slow waves are presented, and simulations quantitatively demonstrated physiological differences between WT and 5-HT(2B) knockout models. This study provides a framework for evaluating how ICC network degradation may impair slow wave propagation and ultimately motility and transit.
机译:胃肠慢波是在Cajal间质细胞(ICC)网络中产生的。在完整的组织中,慢波被夹带到具有更高固有频率的相邻ICC,从而导致慢波的主动传播。人类ICC网络的退化与运动障碍有关;但是,这种关系的病理生理机制尚不确定。采用了最近开发的基于ICC的生物物理数学模型,并对其进行了更新以模拟慢波的夹带。模拟的慢波传播已成功地包含在一维模型中,该模型包含固有频率的梯度。然后在组织模型中模拟慢波传播,该组织模型包含从野生型(WT)和5-HT(2B)敲除(降解的)小鼠空肠转化的肌层ICC网络的真实二维微观结构。结果表明,WT模型中的峰值电流密度比5-HT(2B)敲除模型高0.49μAmm(-2),400 ms后的细胞内Ca(2+)密度为0.26 mM mm(- 2)在WT模型中更高。最后,提出了慢波的组织特异性模型,并且模拟定量地证明了WT和5-HT(2B)敲除模型之间的生理差异。这项研究为评估ICC网络退化如何削弱慢波传播以及最终的运动性和过渡性提供了框架。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号