...
首页> 外文期刊>Comparative biochemistry and physiology, Part B. Biochemistry & molecular biology >Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine
【24h】

Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

机译:弓形虫腺苷激酶的动力学机理及腺苷的高效利用

获取原文
获取原文并翻译 | 示例
           

摘要

Initial velocity and product inhibition studies of Toxoplasma gondii adenosine kinase (TgAK, EC 2.7.1.20) demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were K-Ado = 0.002 +/- 0.0002 mM, K-ATP = 0.05 +/- 0.008 mM, and V-max = 920 +/- 35 mu mol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5'-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. (C) 2015 Elsevier Inc. All rights reserved.
机译:刚体弓形虫腺苷激酶(TgAK,EC 2.7.1.20)的初始速度和产物抑制研究表明,该酶的基本机制是杂种随机双单乒乓单双。最初的速度研究显示出相交的模式,与底物-酶-共底物复合物的形成一致,并且结合模式表明底物的结合会干扰共底物的结合,反之亦然。估计的动力学参数为K-Ado = 0.002 +/- 0.0002 mM,K-ATP = 0.05 +/- 0.008 mM和V-max = 920 +/- 35μmol/ min / mg蛋白。 Ado表现出底物抑制,表明在酶上存在一个以上的Ado结合位点。 ATP缓解了Ado对底物的抑制作用。因此,Ado也与ATP结合位点结合。 AMP与ATP竞争,推测AMP与ATP结合在同一位点。 AMP,ADP和ATP与Ado不竞争,因此,这些核苷酸均不与Ado结合位点结合。 ATP与ADP的组合是累加的。因此,ATP或ADP的结合不会干扰彼此的结合。结论是,对于每消耗一个ATP,TgAK都会生成三个新的AMP。这些发现以及广泛的5'-单,二和三磷酸核苷可以代替ATP作为该反应中的磷酸盐供体的事实可能解释了TgAK在利用Ado作为主要来源方面的有效和核心作用由此可以在弓形虫中合成所有其他嘌呤。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号