...
首页> 外文期刊>ながれ >Studies on Transitional Behavior of Separated Boundary Layer on the Suction Surface of an LP Turbine Airfoil for Aeroengines
【24h】

Studies on Transitional Behavior of Separated Boundary Layer on the Suction Surface of an LP Turbine Airfoil for Aeroengines

机译:航空发动机涡轮叶片翼型吸力面上分离边界层的过渡行为研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In modern high bypass turbofan engines, low-pressure turbine (LPT) stages are required to provide very huge power output to drive large fan for propulsion and additional booster stages very efficiently. Due to the relatively low-speed rotation, the aerodynamic loading of the LPT stages is usually quite high and inevitably the blade count in the LPT stage tends to be very large for maintaining the stage efficiency as high as possible. As a result, LPT section is one of the heaviest parts of the engine, which could amount to about one-third of the engine's total weight. The current design trend of aeroengines is therefore to decrease the number of blades in LPT stages in order to achieve a drastic reduction of engine weight, manufacturing and maintenance costs and total sfc (specific fuel consumption) of aircraft. However, the reduction of the blade number surely induces an increase of the aerodynamic loading on each blade, resulting in the appearance of large separation or separation bubble on the blade suction surface due to the strong adverse pressure gradient, particularly under low Reynolds number conditions. Since this separated flow around the blade causes a significant loss in engine efficiency, there have been a number of relevant studies on separated boundary layer on high-lift LPT blades. Mayle classified the boundary layer transition on LPT blade into three modes in his pioneering paper, describing that separated-flow transition mode could be the most important one for LPT. Nevertheless, it is still necessary to investigate the separated boundary layer because of relatively few studies dealing with its transitional behavior in detail under realistic flow conditions such as Reynolds number and freestream turbulence. Since boundary layer transition and separation depend strongly on these two factors and their interaction, it is quite obvious that understanding of the separated boundary layer subjected to such flow disturbance and development of an accurate method to predict its transition is crucial for lighter and more efficient aeroengines.
机译:在现代高旁通涡轮风扇发动机中,要求低压涡轮(LPT)级提供非常大的功率输出,以非常高效地驱动大型风扇进行推进和附加的增压级。由于相对低速的旋转,LPT级的空气动力负荷通常很高,并且不可避免地,LPT级中的叶片数趋于非常大,以保持级效率尽可能高。结果,LPT部分是发动机最重的部分之一,大约占发动机总重量的三分之一。因此,航空发动机的当前设计趋势是减少LPT级的叶片数量,以实现发动机重量,飞机制造和维护成本以及飞机总sfc(比燃料消耗)的大幅降低。但是,叶片数量的减少肯定会引起每个叶片上的空气动力学负荷的增加,由于强烈的不利压力梯度,特别是在低雷诺数条件下,导致叶片吸入表面上出现大的分离或分离气泡。由于围绕叶片的这种分离流动导致发动机效率的显着降低,因此已经对高升力LPT叶片上的分离边界层进行了许多相关研究。 Mayle在他的开创性论文中将LPT叶片上的边界层过渡分为三种模式,描述了分离流过渡模式对于LPT可能是最重要的一种。然而,由于在现实的流动条件下,例如雷诺数和自由流湍流下,关于边界层过渡行为的详细研究相对较少,因此仍然有必要研究分离的边界层。由于边界层的过渡和分离强烈依赖于这两个因素及其相互作用,因此很明显,了解分离的边界层受到这种流动扰动并开发出精确的预测其过渡的方法对于制造更轻,更高效的航空发动机至关重要。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号