首页> 外文期刊>Biophysical Journal >Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor
【24h】

Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor

机译:莱茵衣藻光系统I反应中心的超快速瞬态吸收研究。 2:P700反应中心叶绿素附近的突变为初级电子供体的性质提供了新的见解

获取原文
获取原文并翻译 | 示例
           

摘要

The energy transfer and charge separation kinetics in several core Photosystem I particles of Chlamydomonas reinhardtii with point mutations around the P-A and P-B reaction center chlorophylls (Chls) have been studied using ultrafast transient absorption spectroscopy in the femtosecond to nanosecond time range to characterize the influence on the early electron transfer processes. The data have been analyzed in terms of kinetic compartment models. The adequate description of the transient absorption kinetics requires three different radical pairs in the time range up to; 100 ps. Also a charge recombination process from the first radical pair back to the excited state is present in all the mutants, as already shown previously for the wild-type (Muller, M. G., J. Niklas, W. Lubitz, and A. R. Holzwarth. 2003. Biophys. J. 85: 3899-3922; and Holzwarth, A. R., M. G. Muller, J. Niklas, and W. Lubitz. 2005. J. Phys. Chem. B. 109: 5903 - 59115). In all mutants, the primary charge separation occurs with the same effective rate constant within the error limits as in the wild-type ("350 ns(-1)), which implies an intrinsic rate constant of charge separation of < 1 ps(-1). The rate constant of the secondary electron transfer process is slowed down by a factor of similar to 2 in the mutant B-H656C, which lacks the ligand to the central metal of Chl PB. For the mutant A-T739V, which breaks the hydrogen bond to the keto carbonyl of Chl P-A, only a slight slowing down of the secondary electron transfer is observed. Finally for mutant A-W679A, which has the Trp near the P-A Chl replaced, either no pronounced effect or, at best, a slight increase on the secondary electron transfer rate constants is observed. The effective charge recombination rate constant is modified in all mutants to some extent, with the strongest effect observed in mutant B-H656C. Our data strongly suggest that the Chls of the P-A and P-B pair, constituting what is traditionally called the "primary electron donor P700'', are not oxidized in the first electron transfer process, but rather only in the secondary electron transfer step. We thus propose a new electron transfer mechanism for Photosystem I where the accessory Chl(s) function as the primary electron donor(s) and the A(0) Chl(s) are the primary electron acceptor(s). This new mechanism also resolves in a straightforward manner the difficulty with the previous mechanism, where an electron would have to overcome a distance of similar to 14 angstrom in,1 ps in a single step. If interpreted within a scheme of single-sided electron transfer, our data suggest that the B-branch is the active branch, although parallel A-branch activity cannot be excluded. All the mutations do affect to a varying extent the energy difference between the reaction center excited state RCstar and the first radical pair and thus affect the rate constant of charge recombination. It is interesting to note that the new mechanism proposed is in fact analogous to the electron transfer mechanism in Photosystem II, where the accessory Chl also plays the role of the primary electron donor, rather than the special Chl pair P680.
机译:使用飞秒至纳秒级的超快速瞬态吸收光谱研究了PA和PB反应中心叶绿素(Chls)附近点突变的莱茵衣藻几个核心光系统I粒子的能量转移和电荷分离动力学早期的电子转移过程。已经根据动力学隔室模型分析了数据。对瞬态吸收动力学的充分描述需要三个不同的自由基对,直到时间范围; 100 ps。在所有突变体中也存在从第一个自由基对回到激发态的电荷重组过程,如先前针对野生型所显示的那样(Muller,MG,J.Niklas,W.Lubitz,and AR Holzwarth.2003。 J.Phys.Biol.J.85:3899-3922;和Holzwarth,AR,MG Muller,J.Niklas和W.Lubitz.2005.J.Phys.Chem.B.109:5903- 59115)。在所有突变体中,一次电荷分离均在与野生型相同的误差范围内以相同的有效速率常数发生(“ 350 ns(-1)),这意味着电荷分离的固有速率常数<1 ps(- 1)。在突变体B-H656C中,二次电子转移过程的速率常数减慢了约2倍,突变体B-H656C缺乏Chl PB中心金属的配体;对于突变体A-T739V,它断裂最后,对于突变型A-W679A,其Trp在PA Chl附近被取代,没有明显的作用,或者充其量是,观察到二次电子传输速率常数略有增加,在所有突变体中有效电荷复合速率常数都得到了一定程度的修改,在突变体B-H656C中观察到了最强的作用。 PB对,构成t常规上称为“一次电子给体P700”的化合物在第一次电子转移过程中不会被氧化,而只会在二次电子转移步骤中被氧化。因此,我们为光电系统I提出了一种新的电子转移机制,其中附件Chl(一个)充当主要电子供体,而A(0)Chl(一个或多个)是主要电子受体。这种新的机制还以直接的方式解决了先前机制的难题,在该机制中,电子将必须一步步克服类似于14埃(1 ps)的距离。如果在单面电子转移方案中解释,我们的数据表明,B分支是活性分支,尽管不能排除平行的A分支活性。所有突变的确在不同程度上影响反应中心激发态RCstar和第一自由基对之间的能量差,从而影响电荷复合的速率常数。有趣的是,提出的新机制实际上类似于Photosystem II中的电子转移机制,其中附件Chl也起主要电子供体的作用,而不是特殊的Chl对P680。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号