...
首页> 外文期刊>Journal of intelligent & fuzzy systems: Applications in Engineering and Technology >Design and implementation of a variable-structure adaptive fuzzy-logic yaw controller for large wind turbines
【24h】

Design and implementation of a variable-structure adaptive fuzzy-logic yaw controller for large wind turbines

机译:大型风力发电机变结构自适应模糊逻辑偏航控制器的设计与实现

获取原文
获取原文并翻译 | 示例
           

摘要

The current trend of wind energy generation industry is to use large and ultra-large wind turbines that can reach more than 10 MW in ratings; especially in off-shore wind farms. Therefore, more emphasis is being given by researchers to increase the harvested energy by each individual wind turbine. Previously, more focus has been given to pitch control techniques of turbine blades for improving the harvested energy and lowering the turbine maintenance cost. However, still not enough work is done to investigate the effectiveness of nacelle yaw control in improving the harvested energy specifically for large wind turbines. In this paper, we introduce a new yaw controller based on adaptive fuzzy systems. The control objective of the proposed controller is to effectively track of the wind direction by yaw motion of the turbine nacelle. For that reason, it is a fuzzy-logic-based controller that has the capability to adaptively tune its rule base online. The change in the fuzzy rule base is done using a variable structure direct adaptive control algorithm to achieve the pre-defined control objectives. This algorithm has two advantages. First, it has a good performance in the training phase as it makes use of the initial rule base defined for the fuzzy logic yaw controller. Second, it has a robust estimator since it depends on a variable structure technique. The adaptive nature of the proposed controller significantly reduces the rule base size and improves its performance. The previous statement is verified through three levels of testing. The first level is Model-In-the-Loop (MIL) MATLAB/SIMULINK extensive simulations, with the performance results get compared to that of a carefully tuned Proportional-Integral-Differential (PID) controller. The second level of testing is through Software-In-the-Loop (SIL) testing using the same use cases. The last level is the Processor-In-the-Loop (PIL) experimental tests using a Texas Instruments TMS320F28335 digital signal processing board.
机译:风能发电行业的当前趋势是使用大型和超大型风力涡轮机,它们的额定功率可以达到10兆瓦以上。特别是在海上风电场。因此,研究人员将更多的精力放在增加每台风力涡轮机收集的能量上。以前,人们已经将更多的注意力放在涡轮叶片的桨距控制技术上,以改善收集的能量并降低涡轮机的维护成本。然而,仍然没有进行足够的工作来研究机舱偏航控制在改善大型风力涡轮机所采集的能量方面的有效性。在本文中,我们介绍了一种基于自适应模糊系统的新型偏航控制器。所提出的控制器的控制目标是通过涡轮机舱的偏航运动来有效地跟踪风向。因此,它是一种基于模糊逻辑的控制器,具有在线自适应调整其规则库的能力。使用可变结构直接自适应控制算法完成模糊规则库的更改,以实现预定的控制目标。该算法有两个优点。首先,由于它利用为模糊逻辑偏航控制器定义的初始规则库,因此在训练阶段具有良好的性能。其次,由于它依赖于可变结构技术,因此它具有鲁棒的估计器。所提出的控制器的自适应性质大大减小了规则库的大小并提高了其性能。前面的陈述通过三个测试级别进行了验证。第一层是循环模型(MIL)MATLAB / SIMULINK广泛的仿真,其性能结果与精心调整的比例积分微分(PID)控制器的性能相比。第二级测试是通过使用相同用例的软件在环(SIL)测试。最后一级是使用德州仪器(TI)TMS320F28335数字信号处理板进行的处理器在环(PIL)实验测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号