...
首页> 外文期刊>Journal of Thermoplastic Composite Materials >Finite Element Method for Active Vibration Suppression of Smart Composite Structures using Piezoelectric Materials
【24h】

Finite Element Method for Active Vibration Suppression of Smart Composite Structures using Piezoelectric Materials

机译:压电材料有效抑制智能复合结构振动的有限元方法

获取原文
获取原文并翻译 | 示例
           

摘要

Adaptive or intelligent structures which have the capability for sensing and responding to their environment promise a novel approach to satisfy the stringent performance requirements of future space missions.Analytical,numerical,and experimental results are employed to verify the performance of piezoelectric stacks and patches as well as to determine the natural frequencies of typical strut and panel structures.A strut model with a piezoelectric stack actuator for axial vibration suppression and a composite beam with surface-mounted piezoelectric patch actuator for lateral vibration suppression are considered to model an active composite strut (ACS)and an active composite panel (ACP),respectively.These ACS and ACP are employed to develop an actuator optimum voltage (OV)for active vibration suppression using modal,harmonic,and transient finite element analyses for a range of frequency encompassing a natural frequency.The ACP model demonstrates that the actuator vibration suppression capability depends on the modal shape and location of the actuator.The OV,in this work,is determined by increasing the level of actuator voltage gradually and generating a vibration with same frequencies as the external vibration but 180 deg out-of-phase,and observing the increasing level of active vibration suppression until an optimum/threshold actuator voltage is reached.Beyond the optimum voltage level,the actuator increased the level of vibration 180 deg out-of-phase.Modal,harmonic,and transient finite element analyses are performed to verify the results.Selected axial and lateral vibration suppression experiments are also performed to verify the numerical results.The analytical,numerical,and experimental results obtained in this work are in excellent agreements.This work also presents a systematic guideline for the use of piezoelectric stack and monolithic patch smart materials in intelligent structures using the finite element method.
机译:具有感知和响应环境能力的自适应或智能结构有望满足未来太空飞行任务对性能的严格要求。采用分析,数值和实验结果来验证压电叠层和贴片的性能为了确定典型的支撑杆和面板结构的固有频率,考虑了采用压电叠层执行器抑制轴向振动的支撑模型和采用表面安装压电贴片执行器抑制横向振动的组合梁来模拟有源组合支撑(ACS这些ACS和ACP分别用于通过模态,谐波和瞬态有限元分析来针对固有频率范围内的频率范围,开发出用于主动抑制振动的执行器最佳电压(OV)。 ACP模型表明执行器的振动抑制能力OV的大小取决于执行器的模态形状和位置。在此工作中,OV是通过逐渐增加执行器电压的电平并产生与外部振动相同的频率但相差180度的振动来确定的,并且观察到主动振动抑制的增加水平,直到达到最佳/阈值执行器电压。超出最佳电压水平,执行器将振动水平提高了180度异相。进行了模态,谐波和瞬态有限元分析进行了选定的轴向和横向振动抑制实验以验证数值结果。这项工作获得的分析,数值和实验结果吻合良好。这项工作也为压电的使用提供了系统性的指导方针。使用有限元方法在智能结构中堆叠和整体修补智能材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号