首页> 外文期刊>Journal of Thermal Science and Engineering Applications: Transactions of the ASME >Active Insulation Technique Applied to the Experimental Analysis of a Thermodynamic Control System for Cryogenic Propellant Storage
【24h】

Active Insulation Technique Applied to the Experimental Analysis of a Thermodynamic Control System for Cryogenic Propellant Storage

机译:主动绝缘技术在低温推进剂储存热力学控制系统的实验分析中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

A technological barrier for long-duration space missions using cryogenic propulsion is the control of the propellant tank self-pressurization (SP). Since the cryogenic propellant submitted to undesired heat load tends to vaporize, the resulting pressure rise must be controlled to prevent storage failure. The thermodynamic vent system (TVS) is one of the possible control strategies. A TVS system has been investigated using on-ground experiments with simulant fluid. Previous experiments performed in the literature have reported difficulties to manage the thermal boundary condition at the tank wall; spurious thermal effects induced by the tank environment spoiled the tank power balance accuracy. This paper proposes to improve the experimental tank power balance, thanks to the combined use of an active insulation technique, a double envelope thermalized by a water loop which yields a net zero heat flux boundary condition and an electrical heating coil delivering a thermal power P_c ∈ [0 - 360]W, which accurately sets the tank thermal input. The simulant fluid is the NOVEC_(1230) fluoroketone, allowing experiments at room temperature T ∈ [40-60]℃. Various SP and TVS experiments are performed with this new and improved apparatus. The proposed active tank insulation technique yields quasi-adiabatic wall condition for all experiments. For TVS control at a given injection temperature, the final equilibrium state depends on heat load and the injection mass flow rate. The cooling dynamics is determined by the tank filling and the injection mass flow rate but does not depend on the heat load P_c.
机译:使用低温推进进行长时间太空飞行的技术障碍是对推进剂箱自加压(SP)的控制。由于经受不希望的热负荷的低温推进剂易于汽化,因此必须控制所产生的压力升高以防止储存失败。热力学通风系统(TVS)是可能的控制策略之一。已经使用模拟流体的地面实验研究了TVS系统。文献中进行的先前实验已经报告了难以管理罐壁的热边界条件的问题。储罐环境引起的寄生热效应破坏了储罐功率平衡的准确性。本文提出,通过结合使用主动绝缘技术,通过水环路对双包络进行热化(产生净零热通量边界条件)和提供热功率P_c的电加热线圈,来提高实验储罐的功率平衡。 [0-360] W,可精确设置储罐热输入。模拟流体是NOVEC_(1230)氟代酮,可以在室温T∈[40-60]℃下进行实验。用这种新的和改进的设备可以进行各种SP和TVS实验。所提出的主动储罐保温技术可为所有实验提供准绝热壁条件。对于给定喷射温度下的TVS控制,最终的平衡状态取决于热负荷和喷射质量流量。冷却动力学由储罐填充和注入质量流量决定,但不取决于热负荷P_c。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号