首页> 外文期刊>Journal of vibration and control: JVC >Active control of flow-induced vibrations via feedback decoupling
【24h】

Active control of flow-induced vibrations via feedback decoupling

机译:通过反馈解耦主动控制流致振动

获取原文
获取原文并翻译 | 示例
           

摘要

This paper deals with the flutter instability characteristics of a cantilever pipe conveying fluid flow, and explores the applicability of an active nodal vibration control for suppressing the associated structural vibration. The Euler-Bernoulli theory is used to represent pipe bending. The finite element method is used to discretize the governing equation. The control law is based on full state feedback and pole assignment, and requires as many actuators as the number of nodal degrees-of-freedom. Considering that this is not practical, a reduced order model with less number of elements is used to design the controller, and the resulting control input is applied to the "full" or the "truth" model. In this case, since the feedback simplification will not be complete, some performance degradation is to be expected. It is however demonstrated that the proposed control strategy can ensure closed loop stability for a wide range of flow velocity even if the critical flow velocity is exceeded. The effectiveness of the proposed method, in damping out the pipe vibrations, is also demonstrated clearly by comparing its results with those obtained by a direct velocity feedback control which is equivalent to add an external viscous damper to the pipe. The proposed control is essentially a model-based controller, and hence suffers from modeling errors and uncertainties in model parameters. Therefore, the robustness of the control is also investigated. It is shown that the proposed controller significantly reduces sensitivity of the uncontrolled system to flow conditions. It works effectively to suppress the vibrations of a fluid conveying cantilever pipe due to any disturbance.
机译:本文探讨了悬臂输送流体流动的颤振不稳定性特征,并探讨了主动节点振动控制在抑制相关结构振动方面的适用性。欧拉-伯努利理论用于表示管道弯曲。有限元法用于离散控制方程。控制定律基于全状态反馈和极点分配,并且需要与节点自由度数量一样多的执行器。考虑到这是不切实际的,因此使用具有较少元素数量的降阶模型来设计控制器,并将所得的控制输入应用于“完整”或“真实”模型。在这种情况下,由于反馈的简化将无法完成,因此性能会有所下降。然而,事实证明,即使超过了临界流速,所提出的控制策略也可以确保宽范围流速下的闭环稳定性。通过将其结果与直接速度反馈控制(等效于在管道上添加外部粘性阻尼器)所获得的结果进行比较,也可以清楚地证明所提出方法在缓解管道振动方面的有效性。所提出的控制本质上是基于模型的控制器,因此存在建模误差和模型参数不确定性的问题。因此,还研究了控制的鲁棒性。结果表明,所提出的控制器大大降低了不受控制系统对流量条件的敏感性。它有效地抑制了由于任何干扰引起的流体输送悬臂管的振动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号