首页> 外文期刊>Journal of Tribology >Load-Displacement Relationships for Ball and Spherical Roller Bearings
【24h】

Load-Displacement Relationships for Ball and Spherical Roller Bearings

机译:球和调心滚子轴承的载荷-位移关系

获取原文
获取原文并翻译 | 示例
       

摘要

Analytical relationships for calculating three rolling element bearing loads (F-x, F-y, and F-z) and two tilting moments (M-y and M-z) as a function of three relative race translations (dx, dy, and dz) and two relative race tilting angles (d theta(y) and d theta(z)) have been given in a previous paper. The previous approach was suggested for any rolling element bearing type, although it has been recognized that the assumption of a constant rolling elementrace contact angle is not well supported by deep groove ball bearings (DGBB) or angular contact ball bearings (ACBB). The new approach described in this paper addresses the latter weaknesses by accounting for the variation of the contact angle on the most loaded ball and also shows that misalignment effects on spherical roller bearing (SRB) loads are negligible. Comparisons between the simplified approach (option 1) and the "enhanced" numerical approach (option 2, which requires a summation of the load components on each ball with the appropriate contact angle included) is made, showing a good correlation as long as the relative misalignment remains reasonable or occurs in the plane corresponding to maximum radial displacement. Option 2 can, however, be recommended since it is easy to program and quite accurate at any misalignment level. Other pros and cons of both options are described. As in the previous paper, a full coupling between all displacements and forces, as well as roller and raceway crown radii, are considered, meaning that Hertzian point contact stiffness is used in roller bearings at low load with a smooth transition toward Hertzian line contact as the load increases. This approach is particularly recommended for programming the rolling element bearing behavior in any finite element analysis or multibody system dynamic tool, since only two nodes are considered: one for the inner race (IR) center, usually connected to a shaft, and another node for the outer race (OR) center, connected to the housing.
机译:根据三个相对座圈平移(dx,dy和dz)和两个相对座圈倾斜角(d)的函数来计算三个滚动元件轴承载荷(Fx,Fy和Fz)和两个倾斜力矩(My和Mz)的解析关系theta(y)和d theta(z))在先前的论文中已经给出。尽管已经认识到,深沟球轴承(DGBB)或角接触球轴承(ACBB)不能很好地支持恒定滚动元件的接触角这一假设,但对于任何滚动轴承类型,都建议采用先前的方法。本文所述的新方法通过考虑最重负荷的滚珠上的接触角的变化解决了后者的缺点,并且还表明,对调心滚子轴承(SRB)载荷的未对准影响可以忽略不计。比较了简化方法(选项1)和“增强型”数值方法(方法2,该方法需要将每个球上的载荷分量相加并包括适当的接触角),只要相对未对准仍然是合理的,或者发生在与最大径向位移相对应的平面中。但是,建议使用选项2,因为它易于编程并且在任何未对准水平下都非常准确。描述了这两种选择的其他优点和缺点。与前一篇论文一样,考虑了所有位移和力之间的完全耦合,以及滚子和滚道的齿冠半径,这意味着在低载荷下向滚动轴承平滑过渡时,赫兹点接触刚度用于低负荷的滚子轴承中。负载增加。特别推荐使用此方法在任何有限元分析或多体系统动力学工具中对滚动轴承的行为进行编程,因为只考虑了两个节点:一个用于内圈(IR)中心,通常连接到轴,另一个用于连接到外壳的外圈(OR)中心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号