...
首页> 外文期刊>Journal of thrombosis and haemostasis: JTH >Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing
【24h】

Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing

机译:通过透射电子显微镜,流式细胞仪,纳米颗粒跟踪分析和电阻脉冲感测确定外泌体和微泡的粒径分布

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Background: Enumeration of extracellular vesicles has clinical potential as a biomarker for disease. In biological samples, the smallest and largest vesicles typically differ 25-fold in size, 300 000-fold in concentration, 20 000-fold in volume, and 10 000 000-fold in scattered light. Because of this heterogeneity, the currently employed techniques detect concentrations ranging from 104 to 1012 vesicles mL-1. Objectives: To investigate whether the large variation in the detected concentration of vesicles is caused by the minimum detectable vesicle size of five widely used techniques. Methods: The size and concentration of vesicles and reference beads were measured with transmission electron microscopy (TEM), a conventional flow cytometer, a flow cytometer dedicated to detecting submicrometer particles, nanoparticle tracking analysis (NTA), and resistive pulse sensing (RPS). Results: Each technique gave a different size distribution and a different concentration for the same vesicle sample. Conclusion: Differences between the detected vesicle concentrations are primarily caused by differences between the minimum detectable vesicle sizes. The minimum detectable vesicle sizes were 70-90 nm for NTA, 70-100 nm for RPS, 150-190 nm for dedicated flow cytometry, and 270-600 nm for conventional flow cytometry. TEM could detect the smallest vesicles present, albeit after adhesion on a surface. Dedicated flow cytometry was most accurate in determining the size of reference beads, but is expected to be less accurate on vesicles, owing to heterogeneity of the refractive index of vesicles. Nevertheless, dedicated flow cytometry is relatively fast and allows multiplex fluorescence detection, making it most applicable to clinical research.
机译:背景:胞外囊泡的计数作为疾病的生物标志物具有临床潜力。在生物样品中,最小和最大的囊泡大小通常相差25倍,浓度相差30万倍,体积相差2万倍,散射光相差1万倍。由于这种异质性,当前采用的技术检测的浓度范围为104到1012个囊泡mL-1。目的:研究五种广泛使用的技术中,可检测到的小泡大小的最小变化是否由最小可检测小泡大小引起。方法:使用透射电子显微镜(TEM),常规流式细胞仪,专用于检测亚微米颗粒的流式细胞仪,纳米颗粒跟踪分析(NTA)和电阻脉冲传感(RPS)测量囊泡和参考珠的大小和浓度。结果:对于相同的囊泡样品,每种技术均给出了不同的尺寸分布和不同的浓度。结论:检测到的囊泡浓度之间的差异主要是由最小可检测囊泡大小之间的差异引起的。对于NTA,最小可检测囊泡大小为70-90 nm,对于RPS为70-100 nm,对于专用流式细胞术为150-190 nm,对于常规流式细胞术为270-600 nm。 TEM可以检测到存在的最小囊泡,即使粘附在表面上也是如此。专用流式细胞术在确定参考珠的大小方面最准确,但由于囊泡折射率的异质性,预计在囊泡上的准确性较差。然而,专用流式细胞术相对较快,并允许多重荧光检测,使其最适用于临床研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号