...
首页> 外文期刊>Journal of Theoretical Biology >Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster.
【24h】

Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster.

机译:盘旋果蝇果蝇的6DoF飞行动力学和被动动力学稳定性的摄动分析。

获取原文
获取原文并翻译 | 示例
           

摘要

Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes.
机译:昆虫表现出对扑动的精确控制,能够执行精确的稳定性和操纵性。在这里,我们基于6自由度(6DoF)运动方程与Navier-Stokes(NS)方程耦合,开发了一个综合的计算模型来研究昆虫盘旋的飞行动力学。不稳定的空气动力学通过使用受生物学启发的动态飞行模拟器来解决,该模拟器集成了逼真的机翼形态和运动学模型以及一个NS解算器。我们通过使用四阶Runge-Kutta方法进一步开发了动力学模型来求解6DoF运动的刚体方程。在该模型中,以傅立叶级数表示基于NS解的瞬时力和力矩。使用此模型,我们对盘旋果蝇果蝇(Drosophila melanogaster)的被动动态稳定性进行了基于系统仿真的分析,特别关注潜伏期中状态变量对六个单向摄动条件的响应。我们的研究结果表明,果蝇盘旋的飞行动力学在惯常意义上没有直接的动态稳定性,因为惯常意义是扰动以单调收敛的方式衰减。然而,发现存在一个瞬变间隔,该瞬变间隔包含针对所有六个扰动变量观察到的初始收敛响应,以及一个最终不稳定性,即至少一个状态变量随后在多个机翼节拍周期之后趋于发散。此外,我们的结果表明,果蝇确实有足够的时间进行一些积极的调解,以保持稳定的悬停,然后再保持身体姿态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号