首页> 外文期刊>Journal of Theoretical Biology >The parageneses thermodynamic analysis of chemoautotrophic CO2 fixation archaic cycle components, their stability and self-organization in hydrothermal systems.
【24h】

The parageneses thermodynamic analysis of chemoautotrophic CO2 fixation archaic cycle components, their stability and self-organization in hydrothermal systems.

机译:化学自养CO2固定古循环成分的亚类热力学分析,其稳定性和在水热系统中的自组织。

获取原文
获取原文并翻译 | 示例
           

摘要

The parageneses physico-chemical analysis based on a method of thermodynamic potentials has been used to study the system of C-H-O organic compounds, which are, in particular, components of biomimetically built primordial cycles of carbon dioxide chemoautotrophic fixation. Thermodynamic data for aqueous organic compounds allowed one to construct the chemical potential diagrams and establish the areas of thermodynamic stability (facies) of components of CO2 fixation pathways in hydrothermal systems, in particular, a reductive citric cycle (RCC), 3-hydroxypropionate cycle (3-HPC) and acetyl-CoA pathway. An alternative deep source of carbon (hydrocarbons) proved by the data on endogenous emission of hydrocarbons in hydrothermal fields of oceanic ridges was suggested. The system was determined, which combines hydrocarbons, CO2 and components of RCC, 3-HPC and acetyl-CoA pathway with characteristic parageneses of methane and ethylene with acetate in two-component CH4-CO2 and C2H4-O2 subsystems, respectively. The thermodynamic analysis of a redox mode at various pressures and temperatures allowed one to uniquely determine hydrocarbon-organic system able to independently generate acetate and succinate at oxidation of deep hydrothermal hydrocarbon fluids emerging on sea surface. The limits for thermodynamic stability of CO2 archaic fixation (CAF) components responsible for generation and self-organization in hydrothermal environment was identified. The tentative integrated system of CAF was developed as a combined acetyl-CoA pathway, 3-HPC and RCC containing a succinate-fumarate core, capable of switching electron flow in forward or reverse direction depending on redox potential of geochemical environment that is governed by the (CH)2(COOH)2+H2=(CH2)2(COOH)2 reaction. This core is a "redox switch", which is sensitive to certain conditions of hydrothermal environment and defines electron flow direction. The redox geochemical mode caused by temperature, pressure, composition of a hydrothermal fluid and amineralogical setting defines stability of CAF cycle components in paragenesis with hydrocarbons and possibility of cycle self-organization.
机译:基于热力学势能方法的共生物理化分析已用于研究C-H-O有机化合物的体系,尤其是二氧化碳化学自养固定仿生构建的原始循环的组成部分。水性有机化合物的热力学数据使人们能够构建化学势图并建立热液系统中CO2固定路径各组分的热力学稳定性(相)区域,特别是还原柠檬酸循环(RCC),3-羟基丙酸酯循环( 3-HPC)和乙酰辅酶A途径。有人提出了一种可供选择的深层碳(碳氢化合物)来源,该数据由海洋洋脊热液场中碳氢化合物的内源性排放数据证明。确定了该系统,该系统将碳氢化合物,CO2和RCC,3-HPC和乙酰辅酶A途径的组分与甲烷和乙烯的特征性共生物与乙酸盐分别在两组分CH4-CO2和C2H4-O2子系统中结合在一起。在各种压力和温度下对氧化还原模式的热力学分析使人们能够唯一确定能够在海面出现的深层热液烃流体氧化时独立产生乙酸盐和琥珀酸盐的烃有机体系。确定了在水热环境中负责生成和自组织的CO2古风固定(CAF)组件的热力学稳定性极限。 CAF的暂定集成系统是结合乙酰-CoA途径,3-HPC和包含琥珀酸-富马酸酯核的RCC共同开发的,能够根据正负的地球化学环境的氧化还原电势来切换正向或反向电子流。 (CH)2(COOH)2 + H 2 =(CH 2)2(COOH)2反应。该核心是“氧化还原开关”,它对水热环境的某些条件敏感,并定义了电子流向。由温度,压力,热液流体的组成和胺类环境引起的氧化还原地球化学模式定义了CAF循环组分在烃类共生中的稳定性以及循环自组织的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号