...
首页> 外文期刊>Journal of the Royal Society Interface >Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics
【24h】

Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics

机译:经济的双足跑步的适应:肢体结构对三维关节力学的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The purpose of this study was to examine the mechanical adaptations linked to economical locomotion in cursorial bipeds. We addressed this question by comparing mass-matched humans and avian bipeds (ostriches), which exhibit marked differences in limb structure and running economy. We hypothesized that the nearly 50 per cent lower energy cost of running in ostriches is a result of: (i) lower limb-swing mechanical power, (ii) greater stance-phase storage and release of elastic energy, and (iii) lower total muscle power output. To test these hypotheses, we used three-dimensional joint mechanical measurements and a simple model to estimate the elastic and muscle contributions to joint work and power. Contradictory to our first hypothesis, we found that ostriches and humans generate the same amounts of mechanical power to swing the limbs at a similar self-selected running speed, indicating that limb swing probably does not contribute to the difference in energy cost of running between these species. In contrast, we estimated that ostriches generate 120 per cent more stance-phase mechanical joint power via release of elastic energy compared with humans. This elastic mechanical power occurs nearly exclusively at the tarsometatarso-phalangeal joint, demonstrating a shift of mechanical power generation to distal joints compared with humans. We also estimated that positive muscle fibre power is 35 per cent lower in ostriches compared with humans, and is accounted for primarily by higher capacity for storage and release of elastic energy. Furthermore, our analysis revealed much larger frontal and internal/external rotation joint loads during ostrich running than in humans. Together, these findings support the hypothesis that a primary limb structure specialization linked to economical running in cursorial species is an elevated storage and release of elastic energy in tendon. In the ostrich, energy-saving specializations may also include passive frontal and internal/external rotation load-bearing mechanisms.
机译:这项研究的目的是检验与两足动物的经济运动有关的机械适应性。我们通过比较匹配的人类和鸟类两足动物(鸵鸟)解决了这个问题,它们在肢体结构和经济运行方面表现出明显差异。我们假设在鸵鸟中跑步的能源成本降低了近50%,其原因是:(i)肢体摆动机械动力降低;(ii)姿态阶段更多地存储和释放弹性能;(iii)总体降低肌肉力量输出。为了检验这些假设,我们使用了三维关节机械测量和一个简单的模型来估计弹性和肌肉对关节功和力量的贡献。与我们的第一个假设相反,我们发现鸵鸟和人类产生相同量的机械动力,以相似的自选运行速度摆动四肢,这表明四肢摆动可能不会导致这两种运动之间的能量消耗差异种类。相比之下,我们估计,与人类相比,鸵鸟通过释放弹性能产生的姿态相机械联合动力高出120%。这种弹性机械动力几乎只在酒石-趾甲-趾关节处发生,表明与人类相比,机械动力向远端关节转移。我们还估计,与人类相比,鸵鸟的正肌纤维力量要低35%,这主要是由于更高的储存和释放弹性能的能力所致。此外,我们的分析表明,鸵鸟奔跑过程中额骨和内部/外部旋转关节的负荷比人类要大得多。总之,这些发现支持了这样的假说,即与经济运行有关的主要肢体结构专业化是肌腱中弹性能量的增加存储和释放。在鸵鸟中,节能专业也可能包括被动式正面和内部/外部旋转承载机构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号