首页> 外文期刊>Cognitive Neurodynamics >A computational neural model of orientation detection based on multiple guesses: comparison of geometrical and algebraic models
【24h】

A computational neural model of orientation detection based on multiple guesses: comparison of geometrical and algebraic models

机译:基于多个猜测的取向检测的计算神经模型:几何模型和代数模型的比较

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The implementation of Hubel-Wiesel hypothesis that orientation selectivity of a simple cell is based on ordered arrangement of its afferent cells has some difficulties. It requires the receptive fields (RFs) of those ganglion cells (GCs) and LGN cells to be similar in size and sub-structure and highly arranged in a perfect order. It also requires an adequate number of regularly distributed simple cells to match ubiquitous edges. However, the anatomical and electrophysiological evidence is not strong enough to support this geometry-based model. These strict regularities also make the model very uneconomical in both evolution and neural computation. We propose a new neural model based on an algebraic method to estimate orientations. This approach synthesizes the guesses made by multiple GCs or LGN cells and calculates local orientation information subject to a group of constraints. This algebraic model need not obey the constraints of Hubel-Wiesel hypothesis, and is easily implemented with a neural network. By using the idea of a satisfiability problem with constraints, we also prove that the precision and efficiency of this model are mathematically practicable. The proposed model makes clear several major questions which Hubel-Wiesel model does not account for. Image-rebuilding experiments are conducted to check whether this model misses any important boundary in the visual field because of the estimation strategy. This study is significant in terms of explaining the neural mechanism of orientation detection, and finding the circuit structure and computational route in neural networks. For engineering applications, our model can be used in orientation detection and as a simulation platform for cell-to-cell communications to develop bio-inspired eye chips.
机译:Hubel-Wiesel假设的实现(即简单细胞的方向选择性基于其传入细胞的有序排列)的实现存在一些困难。它要求那些神经节细胞(GCs)和LGN细胞的感受野(RFs)在大小和亚结构上相似,并以完美的顺序高度排列。它还需要足够数量的规则分布的简单单元以匹配普遍存在的边缘。但是,解剖学和电生理学证据不足以支持这种基于几何的模型。这些严格的规律性也使模型在进化和神经计算方面都非常不经济。我们提出了一种基于代数方法的新神经模型来估计方向。这种方法综合了多个GC或LGN单元所作的猜测,并计算了受一组约束约束的局部方向信息。该代数模型不需要遵守Hubel-Wiesel假设的约束,并且可以通过神经网络轻松实现。通过使用带有约束的可满足性问题的思想,我们还证明了该模型的精度和效率在数学上是可行的。提出的模型明确了Hubel-Wiesel模型无法解决的几个主要问题。进行图像重建实验以检查该模型是否由于估计策略而错过了视野中的任何重要边界。对于解释方向检测的神经机制,以及在神经网络中找到电路结构和计算路线,这项研究具有重要意义。对于工程应用,我们的模型可用于方向检测,并可作为用于细胞间通信以开发生物启发眼芯片的仿真平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号