...
首页> 外文期刊>Journal of the Optical Society of America, B. Optical Physics >Rubidium chip-scale atomic clock with improved long-term stability through light intensity optimization and compensation for laser frequency detuning
【24h】

Rubidium chip-scale atomic clock with improved long-term stability through light intensity optimization and compensation for laser frequency detuning

机译:light芯片级原子钟,通过优化光强度和补偿激光失谐而提高了长期稳定性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We demonstrate the implementation of a Rb-87 chip-scale atomic clock (CSAC) that has improved long-term stability. A simple method of reducing the frequency drift in the CSAC is proposed. As well as the well-known effect of light intensity on the clock frequency, our analysis shows that the frequency drift that is due to laser frequency detuning (LFD) variation originates from asymmetry in the coherent laser fields, and thus, we propose to actively compensate the clock frequency by using variations in the light intensity and LFD. We performed experiments to obtain precise clock frequency sensitivities to the light intensity and LFD, and the frequency drift was reduced from 7.1 x 10(-11)/day to 6.9 x 10(-13)/day with the frequency compensation method. Additionally, the CSAC with an optimized configuration of light intensity and microwave power showed evident long-term frequency stability improvement, from 8.9 x 10(-11) to 8.7 x 10(-12) at 10(5) s. Therefore, our method is useful in reducing the frequency drift of CSACs and could be potentially used in applications that require moderate long-term stability of sub-1 x 10(-11). (C) 2016 Optical Society of America
机译:我们演示了Rb-87芯片级原子钟(CSAC)的实现,该时钟具有改善的长期稳定性。提出了一种减少CSAC中频率漂移的简单方法。除了众所周知的光强度对时钟频率的影响之外,我们的分析还表明,由于激光频率失谐(LFD)变化而引起的频率漂移源自相干激光场中的不对称性,因此,我们建议积极通过使用光强度和LFD的变化来补偿时钟频率。我们进行了实验以获得对光强度和LFD的精确时钟频率敏感性,并且使用频率补偿方法将频率漂移从7.1 x 10(-11)/天降低到6.9 x 10(-13)/天。此外,具有优化的光强度和微波功率配置的CSAC表现出明显的长期频率稳定性改善,在10(5)s从8.9 x 10(-11)增至8.7 x 10(-12)。因此,我们的方法对于减少CSAC的频率漂移很有用,并且可以潜在地用于要求sub-1 x 10(-11)具有中等长期稳定性的应用中。 (C)2016美国眼镜学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号