【24h】

Cooling power of underground environments

机译:地下环境的制冷能力

获取原文
获取原文并翻译 | 示例
           

摘要

The problem of heat stress underground in thegold mines is approached on the basis of the heat transferbetween the human body and the underground environment.Experimental measurements of radiant and convective heattransfer and a theoretical calculation of maximum evaporativeheat transfer enable the maximum cooling power of anenvironment to be calculated in terms of the dry-bulb and wet-bulb temperature, the mean radiant temperature, the wind speedand the barometric pressure. For most underground applicationsthe cooling power can be expressed as a function of wet-bulbtemperature and wind speed only The relative importance ofwind speed and wet-bulb temperature can be assessed. Inworking places where wind speed is low additional cooling ofworkmen can be achieved more effectively by increased windspeed than by decreased wet-bulb temperature. The wet katareading proves to be of limited value as an index of heat stressbecause environments with equal wet kata do not necessarilyhave the same cooling power: Finally, thermal equilibrium withthe environment is possible when cooling power equals orexceeds the rate of metabolic heat generation. The rates ofmetabolic heat generation for
机译:基于人体与地下环境之间的热传递,探讨了金矿地下的热应力问题。辐射和对流热传递的实验测量以及最大蒸发热传递的理论计算可以使环境的最大冷却功率达到根据干球和湿球温度,平均辐射温度,风速和大气压计算。对于大多数地下应用,冷却能力只能表示为湿球温度和风速的函数。可以评估风速和湿球温度的相对重要性。在风速低的工作场所,增加风速比降低湿球温度可以更有效地实现对工人的额外冷却。事实证明,湿卡纸读数的价值有限,因为具有相同湿卡纸的环境不一定具有相同的冷却功率:最后,当冷却功率等于或超过代谢热量的产生速度时,与环境的热平衡是可能的。代谢热的产生速率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号