...
首页> 外文期刊>Clinical neurophysiology >Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.
【24h】

Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.

机译:电流控制的深部大脑刺激减少了在电压控制的刺激过程中观察到的体内电压波动。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

OBJECTIVE: Clinical deep brain stimulation (DBS) systems typically utilize voltage-controlled stimulation and thus the voltage distribution generated in the brain can be affected by electrode impedance fluctuations. The goal of this study was to experimentally evaluate the theoretical advantages of using current-controlled pulse generators for DBS applications. METHODS: Time-dependent changes in the voltage distribution generated in the brain during voltage-controlled and current-controlled DBS were monitored with in vivo experimental recordings performed in non-human primates implanted with scaled-down clinical DBS electrodes. RESULTS: In the days following DBS lead implantation, electrode impedance progressively increased. Application of continuous stimulation through the DBS electrode produced a decrease in the electrode impedance in a time dependent manner, with the largest changes occurring within the first hour of stimulation. Over that time period, voltage-controlled stimuli exhibited an increase in the voltage magnitudes generated in the tissue near the DBS electrode, while current-controlled DBS showed minimal changes. CONCLUSION: Large electrode impedance changes occur during DBS. During voltage-controlled stimulation, these impedance changes were significantly correlated with changes in the voltage distribution generated in the brain. However, these effects can be minimized with current-controlled stimulation. SIGNIFICANCE: The use of current-controlled DBS may help minimize time-dependent changes in therapeutic efficacy that can complicate patient programming when using voltage-controlled DBS.
机译:目的:临床深层脑刺激(DBS)系统通常利用电压控制的刺激,因此电极阻抗波动会影响大脑中产生的电压分布。这项研究的目的是通过实验评估在DBS应用中使用电流控制脉冲发生器的理论优势。方法:通过在植入有按比例缩小的临床DBS电极的非人类灵长类动物体内进行的体内实验记录,监测电压控制和电流控制的DBS期间大脑中产生的电压分布随时间的变化。结果:在DBS铅植入后的几天里,电极阻抗逐渐增加。通过DBS电极施加连续刺激会以时间相关的方式降低电极阻抗,最大的变化发生在刺激的第一个小时内。在该时间段内,电压控制的刺激物在DBS电极附近的组织中产生的电压幅度增加,而电流控制的DBS则显示出最小的变化。结论:DBS期间电极阻抗发生较大变化。在电压控制的刺激过程中,这些阻抗变化与大脑中产生的电压分布的变化显着相关。但是,这些影响可以通过电流控制的刺激最小化。重要性:使用电流控制的DBS可能有助于最小化治疗效果随时间的变化,这会使使用电压控制的DBS的患者编程变得复杂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号