首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis
【24h】

A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis

机译:使用有限元分析比较裂纹位置,载荷和方向不同的裂纹纤维组织标本中的应力

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cracks in fibrous soft tissue, such as intervertebral disc annulus fibrosus and knee meniscus, cause pain and compromise joint mechanics. A crack concentrates stress at its tip, making further failure and crack extension (fracture) more likely. Ex vivo mechanical testing is an important tool for studying the loading conditions required for crack extension, but prior work has shown that it is difficult to reproduce crack extension. Most prior work used edge crack specimens in uniaxial tension, with the crack 90 to the edge of the specimen. This configuration does not necessarily represent the loading conditions that cause in vivo crack extension. To find a potentially better choice for experiments aiming to reproduce crack extension, we used finite element analysis to compare, in factorial combination, (1) center crack vs. edge crack location, (2) biaxial vs. uniaxial loading, and (3) crack-fiber angles ranging from 0 degrees to 90 degrees. The simulated material was annulus fibrosus fibrocartilage with a single fiber family. We hypothesized that one of the simulated test cases would produce a stronger stress concentration than the commonly used uhiaxially loaded 90 degrees crack-fiber angle edge crack case. Stress concentrations were compared between cases in terms of fiber-parallel stress (representing risk of fiber rupture), fiber-perpendicular stress (representing risk of matrix rupture), and fiber shear stress (representing risk of fiber sliding). Fiber-perpendicular stress and fiber shear stress concentrations were greatest in edge crack specimens (of any crack-fiber angle) and center crack specimens with a 90 degrees crack-fiber angle. However, unless the crack is parallel to the fiber direction, these stress components alone are insufficient to cause crack opening and extension. Fiber-parallel stress concentrations were greatest in center crack specimens with a 45 degrees crack-fiber angle, either biaxially or uniaxially loaded. We therefore recommend that the 45 degrees center crack case be tried in future experiments intended to study crack extension by fiber rupture. (C) 2015 Elsevier Ltd. All rights reserved.
机译:纤维软组织的裂缝,例如椎间盘纤维环和膝盖半月板,会引起疼痛并损害关节力学。裂纹将应力集中在其尖端,使进一步的破坏和裂纹扩展(断裂)的可能性更高。体外机械测试是研究裂纹扩展所需的载荷条件的重要工具,但先前的工作表明,很难再现裂纹扩展。先前的大多数工作都是在单轴张力下使用边缘裂纹样品,裂纹90到样品边缘。此配置不一定代表导致体内裂纹扩展的加载条件。为了找到旨在再现裂纹扩展的实验的更好选择,我们使用有限元分析以因子组合的方式比较了(1)中心裂纹与边缘裂纹的位置,(2)双轴与单轴载荷,以及(3)裂纹纤维角度范围从0度到90度。模拟的材料是具有单纤维家族的纤维环纤维软骨。我们假设,其中一个模拟测试案例会比通常使用的超轴加载90度裂纹-纤维角边缘裂纹案例产生更大的应力集中。根据纤维平行应力(代表纤维断裂的风险),纤维垂直应力(代表基体断裂的风险)和纤维剪切应力(代表纤维滑动的风险)对案例之间的应力集中进行了比较。在边缘裂纹样品(任何裂纹纤维角度)和中心裂纹样品(纤维角度均为90度)中,纤维垂直应力和纤维剪切应力集中最大。但是,除非裂纹平行于纤维方向,否则仅这些应力分量就不足以引起裂纹的打开和扩展。纤维平行应力集中在裂纹纤维角度为45度的中心裂纹样品中最大,无论是双轴加载还是单轴加载。因此,我们建议在以后的实验中尝试使用45度中心裂纹的情况,以研究由于纤维断裂引起的裂纹扩展。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号