首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage
【24h】

Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage

机译:包含连续纤维分布的多孔黏弹性有限元模型,用于模拟关节软骨的纳米压痕测试

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Articular cartilage is a soft hydrated tissue that facilitates proper load transfer in diarthroidal joints. The mechanical properties of articular cartilage derive from its structural and hierarchical organization that, at the micrometric length scale, encompasses three main components: a network of insoluble collagen fibrils, negatively charged macromolecules and a porous extracellular matrix. In this work, a constituent-based constitutive model for the simulation of nanoindentation tests on articular cartilage is presented: it accounts for the multi-constituent, non-linear, porous, and viscous aspects of articular cartilage mechanics. In order to reproduce the articular cartilage response under different loading conditions, the model considers a continuous distribution of collagen fibril orientation, swelling, and depth-dependent mechanical properties. The model's parameters are obtained by fitting published experimental data for the time-dependent response in a stress relaxation unconfmed compression test on adult bovine articular cartilage. Then, model validation is obtained by simulating three independent experimental tests: (i) the time-dependent response in a stress relaxation confined compression test, (ii) the drained response of a flat punch indentation test and (iii) the depth-dependence of effective Poisson's ratio in a unconfmed compression test.Finally, the validated constitutive model has been used to simulate multiload spherical nanoindentation creep tests. Upon accounting for strain-dependent tissue permeability and intrinsic viscoelastic properties of the collagen network, the model accurately fits the drained and undrained curves and time-dependent creep response. The results show that depth-dependent tissue properties and glycosaminoglycan-induced tissue swelling should be accounted for when simulating indentation experiments.
机译:关节软骨是一种柔软的水合作用组织,有助于在关节周围进行适当的负荷转移。关节软骨的机械特性源自其结构和层次结构,在微米长度范围内,它包含三个主要成分:不溶性胶原纤维,带负电的大分子网络和多孔的细胞外基质。在这项工作中,提出了一种基于成分的本构模型,用于模拟关节软骨的纳米压痕测试:它说明了关节软骨力学的多成分,非线性,多孔和粘性方面。为了重现在不同负荷条件下的关节软骨反应,该模型考虑了胶原纤维取向,肿胀和深度依赖性机械性能的连续分布。该模型的参数是通过对成人牛软骨进行的应力松弛无约束压缩测试中随时间变化的响应拟合已发布的实验数据而获得的。然后,通过模拟三个独立的实验测试来获得模型验证:(i)应力松弛约束压缩测试中的时间相关响应;(ii)平板冲头压痕测试的排水响应;以及(iii)深度相关性最后,验证的本构模型已用于模拟多载荷球形纳米压痕蠕变试验。考虑到应变相关的组织渗透性和胶原网络的固有粘弹性,该模型可以准确拟合排水曲线和不排水曲线以及随时间变化的蠕变响应。结果表明,模拟压痕实验应考虑深度依赖的组织特性和糖胺聚糖诱导的组织肿胀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号