首页> 外文期刊>Journal of the Chinese Chemical Society. >Time-Resolved High and Low Temperature Phase Transitions of the Nanocrystalline Cubic Phase in the Y_2O_3-ZrO_2 and Fe_2O_3-ZrO_2 System
【24h】

Time-Resolved High and Low Temperature Phase Transitions of the Nanocrystalline Cubic Phase in the Y_2O_3-ZrO_2 and Fe_2O_3-ZrO_2 System

机译:Y_2O_3-ZrO_2和Fe_2O_3-ZrO_2系统中纳米晶立方相的时间分辨高温和低温相变

获取原文
获取原文并翻译 | 示例
           

摘要

The nanocrystalline cubic phase of zirconia was found to be thermally stabilized by addition of 2.56 to 17.65 mol% Y_2O_3 (5.0 to 30.0 mol% Y,95.0 to 70.0 mol% Zr cation content).The cubic phase of yttria stabilized zirconia was prepared by thermal decomposition of the hydroxides at 400degC for hr.2.56 mol% Y_2O_3-ZrO_2 was stable up to 800degC in an argon atmosphere.The samples with 4.17 to 17.65 mol% Y_2O_3 were stable to 1200degC and higher.All samples at temperatures between 1450degC to 1700degC were cubic except the sample with 2.56 mol% Y_2O_3 which was tetragonal.The crystallite sizes observed for the cubic phase ranged from 50 to 150 A at temperatures below 900degC and varied from 600 to 800 nm between 1450degC and 1700degC.Control of urnace atmosphere is the main factor for obtaining the cubic phase of Y-SZ at higher temperature. Nanocrystalline cubic Fe-SZ (Iron Stabilized Zirconia )with crystallite sizes from 70 to 137 A was also prepared at 400degC.It transformed isothermally at temperatures above 800degC to the tetragonal Fe-SZ and ultimately to the monoclinic phase at 900degC.The addition of up to 30 mol% Fe(III)thermally stabilized the cubic phase above 800degC in argon.Higher mol% resulted in a separation of Fe_2O_3.The nanocrystalline cubic Fe-SZ containing a minimum 20 mol% Fe(III) was found to have the greatest thermal stability.The particle size was a primary factor in determining cubic or tetragonal formation.The oxidation state of Fe in zirconia remained Fe~(3+).Fe-SZ lattice parameters and rate of particle growth were observed ot decrease with higher iron content.The thermal stability of Fe-SZ is comparable with that of Ca-SZ,Mg-SZ and Mn-SZ prepared by htis mehtod.
机译:通过添加2.56至17.65 mol%的Y_2O_3(5.0至30.0 mol%的Y,95.0至70.0 mol%的Zr阳离子含量),发现氧化锆的纳米晶立方相是热稳定的。氢氧化物在400°C分解2.65 mol%的Y_2O_3-ZrO_2在氩气中最高可稳定在800°C.4.17%至17.65 mol%的Y_2O_3稳定在1200°C以上。除了Y2O_3为2.56 mol%的四方晶外,在900°C以下的温度下,立方相的晶粒尺寸为50至150 A,在1450°C至1700°C之间的范围为600至800 nm。控制炉膛气氛是主要的在较高温度下获得Y-SZ立方相的因素。还在400°C下制备了晶粒尺寸为70至137 A的纳米晶立方Fe-SZ(铁稳定的氧​​化锆),在800°C以上的温度下等温转变为四方Fe-SZ,最终在900°C转变为单斜晶相。到30 mol%的Fe(III)使氩气中的立方相稳定在800°C以上。较高的mol%导致Fe_2O_3分离。发现最小含量为20 mol%的Fe(III)的纳米晶立方Fe-SZ具有最大的热稳定性。粒径是决定立方或四方晶形成的主要因素。氧化锆中铁的氧化态保持为Fe〜(3+)。随着铁含量的增加,观察到Fe-SZ晶格参数和粒子生长速率降低Fe-SZ的热稳定性与htis mehtod制备的Ca-SZ,Mg-SZ和Mn-SZ相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号