首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure
【2h】

Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure

机译:在室温和低压下剪切诱导的纳米晶六方氮化硼向相结构的相变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure–room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear.
机译:氮化硼(BN),石墨,碳化硼(BC)和氮化硼碳氮化物(BCN)系统的无序结构被认为是在这些系统中合成超硬相的重要前体材料。但是,此类材料的相变只能在极端压力-温度条件下实现,而这与工业应用无关。在这里,在由原位同步加速器监测的旋转金刚石砧盒(RDAC)中施加大的塑性剪切后,在室温下在6.7 GPa的压力下发现了从无序纳米晶六角形(h)BN到超硬符石英(w)BN的相变。 X射线衍射(XRD)测量。然而,在静水压缩至52.8 GPa的情况下,相同的hBN样品未转化为wBN,但可能经历了可逆转化为具有密堆积弯曲层的高压无序相。在所有报道的室温下从hBN到wBN的直接相变中,当前相变压力是最低的。通常,较大的塑性应变会导致无序和非晶化。相反,在这里,高度无序的hBN转化为结晶wBN。讨论了应变诱导相变的机理以及如此低的相变压力的原因。我们的结果表明,在无序或无定形前体的塑性剪切作用下,可以在室温下进行超硬材料的低压合成。它们还为纳米晶材料以及在大范围剪切下具有无序和非晶结构的材料的相变开辟了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号