首页> 外文期刊>Journal of the Chemical Society, Dalton Transactions. Inorganic Chemistry >Quantum mechanical modelling of alkene hydroformylation as catalyzed by xantphos-Rh complexes
【24h】

Quantum mechanical modelling of alkene hydroformylation as catalyzed by xantphos-Rh complexes

机译:Xantphos-Rh配合物催化的烯烃加氢甲酰化的量子力学建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Fundamental issues concerning the hydroformylation of 1-alkenes as catalyzed by Rh complexes ligated with the xantphos diphosphine ligand are explored using ONIOM calculations. In this study xantphos serves as a prototype of the large bite-angle ligands that are associated with high regioselectivity and rates in catalytic hydroformmylation. Computations have been used to explore the thermodynamics of 56 unique isomers (e.g., cis vs. trans isomers of square planar complexes, diequatorial vs. axial-equatorial five-coordinate complexes) and conformers for intermediates along the reaction pathway. More than 20 transition states relevant to the catalyst mechanism have been determined. In terms of realistically modelling experiment, the computational results are mixed. I agreement with experiment, the computations yield a mixture of diequatorial and axial-equatorial isomers of HRh(xantphos)(CO)_2 as the catalyst resting state. Dissociation of CO from these complexes is computed to be vbarrierless leading to a computed free energy for exchange of CO ligands around 15 kcal mol~(-1), somewhat lowr than the value of ca. 20 kcl mol~(-1) derived from experimental data. The computed ratios of rates of propene insertion to form n-propyl and i-propyl Rh-alkyl (42:1) is in good agreement with experimental ratios of n-nonanal to i-nonanal (52:1) for 1-octene hydroformylation. Nonetheless, the computations dramatically overestimate the overall activation free energies for catalytic hydroformylation. Thus, at this stage computations do not provide useful insight into the the kinetics of hydroformylation and detailed mechanistic issues. It appears that much of this discrepancy between computed and experimental activation energies originates from the underestimation of propene bonding energies.
机译:使用ONIOM计算,探索了有关由与黄磷二膦配体连接的Rh络合物催化的1-烯烃加氢甲酰化的基本问题。在这项研究中,xantphos用作大咬角配体的原型,与高区域选择性和催化加氢甲酰化反应速率有关。已经使用计算来探索56种独特的异构体(例如,方形平面复合物的顺式与反式异构体,二角与轴-赤道五坐标络合物的顺式与反式异构体)和沿着反应路径的中间体的构象异构体的热力学。已经确定了与催化剂机理有关的超过20种过渡态。就实际建模实验而言,计算结果是混合的。与实验一致,计算结果得出了HRh(xantphos)(CO)_2的二位和轴向-赤道异构体的混合物作为催化剂的静止状态。从这些络合物中解离的CO被计算为无障碍的,从而导致计算出的自由能用于交换15 kcal mol〜(-1)左右的CO配体,比ca的值略低。由实验数据得出20 kcl mol〜(-1)。丙烯形成正丙基和异丙基Rh-烷基的丙烯插入速率的比率(42:1)与1-辛烯加氢甲酰基化的正壬醛与异壬醛的比率(52:1)非常吻合。尽管如此,该计算极大地高估了催化加氢甲酰化反应的全部活化自由能。因此,在这一阶段的计算不能提供有用的见解加氢甲酰化的动力学和详细的机理问题。看来,计算的活化能与实验的活化能之间的大部分差异是由于对丙烯键合能的低估所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号