...
首页> 外文期刊>Journal of the Atmospheric Sciences >Mountain-wave momentum flux in an evolving synoptic-scale flow
【24h】

Mountain-wave momentum flux in an evolving synoptic-scale flow

机译:天气尺度尺度流中的山波动量通量

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution of mountain-wave-induced momentum flux is examined through idealized numerical simulations during the passage of a time-evolving synoptic-scale flow over an isolated 3D mountain of height h. The dynamically consistent synoptic-scale flow U accelerates and decelerates with a period of 50 h; the maximum wind arrives over the mountain at 25 h. The synoptic-scale static stability N is constant, so the time dependence of the nonlinearity parameter, epsilon(t) = Nh/U(t), is symmetric about a minimum value at 25 h.The evolution of the vertical profile of momentum flux shows substantial asymmetry about the midpoint of the cycle even though the nonlinearity parameter is symmetric. Larger downward momentum fluxes are found during the accelerating phase, and the largest momentum fluxes occur in the mid- and upper troposphere before the maximum background flow arrives at the mountain. For a period of roughly 15 h, this vertical distribution of momentum flux accelerates the lower-tropospheric zonal-mean winds due to low-level momentum flux convergence.Conservation of wave action and Wentzel-Kramers-Brillouin (WKB) ray tracing are used to reconstruct the time-altitude dependence of the mountain-wave momentum flux in a semianalytic procedure that is completely independent of the full numerical simulations. For quasi-linear cases, the reconstructions show good agreement with the numerical simulations, implying that the basic asymmetry obtained in the full numerical simulations may be interpreted using WKB theory. These results demonstrate that even slow variations in the mean flow, with a time scale of 2 days, play a dominant role in regulating the vertical profile of mountain-wave-induced momentum flux.The time evolution of cross-mountain pressure drag is also examined in this study. For almost-linear cases, the pressure drag is well predicted under steady-state linear theory by using the instantaneous incident flow. Nevertheless, for mountains high enough to preserve a moderate degree of nonlinearity when the synoptic-scale incident flow is strongest, the evolution of cross-mountain pressure drag is no longer symmetric about the time of maximum wind. A higher drag state is found when the cross-mountain flow is accelerating. These results suggest that the local character of the topographically induced disturbance cannot be solely determined by the instantaneous value of the nonlinearity parameter epsilon.
机译:在高度为h的孤立3D山上随时间变化的天气尺度流经过的过程中,通过理想的数值模拟检查了山波感应动量通量的演变。动态一致的天气尺度流U以50 h的周期加速和减速。 25 h,最大风吹过山。天气尺度的静态稳定性N是恒定的,因此非线性参数epsilon(t)= Nh / U(t)的时间依赖性在25 h时关于最小值对称。动量通量的垂直剖面的演变即使非线性参数是对称的,它也表现出关于循环中点的不对称性。在加速阶段发现较大的向下动量通量,并且最大的动量通量出现在对流层中和上层,直到最大背景流量到达山顶为止。在大约15小时的时间里,动量通量的这种垂直分布由于低水平的动量通量会聚而加速了对流层低层的纬向平均风。利用波作用的守恒和Wentzel-Kramers-Brillouin(WKB)射线追踪技术完全独立于完整数值模拟的半解析过程重建山波动量通量的时空依赖性。对于准线性情况,重建与数值模拟显示出良好的一致性,这意味着可以使用WKB理论来解释在完全数值模拟中获得的基本不对称性。这些结果表明,即使平均流量的缓慢变化(时间尺度为2天)在调节山波引起的动量通量的垂直剖面中也起着主导作用。还研究了跨山压力拖曳的时间演变在这个研究中。对于近似线性的情况,在稳态线性理论下,通过使用瞬时入射流可以很好地预测压力阻力。然而,对于在天气尺度的入射流最强时足以保持中等程度的非线性的高山而言,跨山压力拖曳的演化不再与最大风的时间对称。当跨山流加速时,发现较高的阻力状态。这些结果表明,不能仅通过非线性参数ε的瞬时值确定地形诱发扰动的局部特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号