...
首页> 外文期刊>Journal of the Atmospheric Sciences >Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation
【24h】

Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation

机译:NWP系统中热带气旋形成的预测和诊断。第二部分:热带气旋克里斯形成的诊断

获取原文
获取原文并翻译 | 示例
           

摘要

This is the second of a three-part investigation into tropical cyclone (TC) genesis in the Australian Bureau of Meteorology's Tropical Cyclone Limited Area Prediction System (TC-LAPS). The primary TC-LAPS vortex enhancement mechanism (convergence/stretching and vertical advection of absolute vorticity in convective updraft regions) was presented in Part I. In this paper (Part II) results from a numerical simulation of TC Chris (western Australia, February 2002) are used to illustrate the primary and two secondary vortex enhancement mechanisms that led to TC genesis. In Part III a number of simulations are presented exploring the sensitivity and variability of genesis forecasts in TC-LAPS. During the first 18 h of the simulation, a mature vortex of TC intensity developed in a monsoon low from a relatively benign initial state. Deep upright vortex cores developed from convergence/stretching and vertical advection of absolute vorticity within the updrafts of intense bursts of cumulus convection. Individual convective bursts lasted for 6-12 h, with a new burst developing as the previous one weakened. The modeled bursts appear as single updrafts, and represent the mean vertical motion in convective regions because the 0.15 degrees grid spacing imposes a minimum updraft scale of about 60 km. This relatively large scale may be unrealistic in the earlier genesis period when multiple smaller-scale, shorter-tived convective regions are often observed, but observational evidence suggests that such scales can be expected later in the process. The large scale may limit the convection to only one or two active bursts at a time, and may have contributed to a more rapid model intensification than that observed. The monsoon low was tilted to the northwest, with convection initiating about 100-200 km west of the low-level center. The convective bursts and associated upright potential vorticity (PV) anomalies were advected cyclonically around the low, weakening as they passed to the north of the circulation center, leaving remnant cyclonic PV anomalies. Strong convergence into the updrafts led to rapid ingestion of nearby cyclonic PV anomalies, including remnant PV cores from decaying convective bursts. Thus convective intensity, rather than the initial vortex size and intensity, determined dominance in vortex interactions. This scavenging of PV by the active convective region, termed diabatic upscale vortex cascade, ensured that PV cores grew successively and contributed to the construction of an upright central monolithic PV core. The system-scale intensification (SSI) process active on the broader scale (300-500-km radius) also contributed. Latent heating slightly dominated adiabatic cooling within the bursts, which enhanced the system-scale secondary circulation. Convergence of low- to midlevel tropospheric absolute vorticity by this enhanced circulation intensified the system-scale vortex. The diabatic upscale vortex cascade and SSI are secondary processes dependent on the locally enhanced vorticity and heat respectively, generated by the primary mechanism.
机译:这是澳大利亚气象局热带气旋有限区域预报系统(TC-LAPS)对热带气旋(TC)成因进行的三部分研究的第二部分。第一部分介绍了主要的TC-LAPS涡旋增强机制(对流上升区的绝对涡度的收敛/伸展和垂直对流)。本文(第二部分)是TC Chris(澳大利亚西部,2002年2月)的数值模拟结果。 )用于说明导致TC产生的主要和两个次要涡旋增强机制。在第三部分中,提出了许多模拟,以探索TC-LAPS中成因预报的敏感性和可变性。在模拟的前18小时内,TC强度的成熟旋涡从相对温和的初始状态在季风低点形成。深层直立涡旋芯是由积云对流强烈爆发上升气流中的绝对涡度的收敛/伸展和垂直对流发展而来的。单独的对流爆发持续了6-12小时,随着前一个减弱,又出现了新的爆发。建模爆发显示为单个上升气流,并代表对流区域的平均垂直运动,因为0.15度的网格间距施加了大约60 km的最小上升气流比例。当人们经常观察到多个较小尺度,短活动的对流区域时,这种相对较大的尺度在较早的成因时期可能是不现实的,但是观察证据表明可以在过程的后期预期这种尺度。大尺度可能将对流一次限制为仅一个或两个活动爆发,并且可能导致比观察到的更快的模型强化。季风低点向西北倾斜,对流在低层中心以西约100-200 km处开始。对流爆发和相关的直立潜在涡度(PV)异常绕低空旋流平移,随着它们传到循环中心的北部而减弱,留下了残留的气旋PV异常。对上升气流的强烈收敛导致附近气旋PV异常的迅速吸收,包括对流爆发衰减造成的剩余PV核。因此,对流强度而不是初始涡旋大小和强度决定了涡旋相互作用中的优势。主动对流区域对这种PV的清除(称为非绝热高档涡流级联)确保了PV核不断增长,并有助于构建直立的中央整体PV核。在更大范围(半径300-500公里)上活跃的系统规模增强(SSI)过程也做出了贡献。潜热在爆发期间的绝热冷却中略占优势,这增强了系统规模的二次循环。通过这种增强的环流,低层对中层对流层绝对涡度的收敛增强了系统尺度的涡旋。绝热高级涡流级联和SSI是次要过程,分别取决于由主要机理产生的局部增强的涡度和热量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号