首页> 外文期刊>Journal of the Atmospheric Sciences >The dynamics of mountain-wave-induced rotors
【24h】

The dynamics of mountain-wave-induced rotors

机译:山波感应转子的动力学

获取原文
获取原文并翻译 | 示例
       

摘要

The development of rotor flow associated with mountain lee waves is investigated through a series of high-resolution simulations with the nonhydrostatic Coupled Ocean-Atmospheric Mesoscale Prediction System (COAMPS) model using free-slip and no-slip lower boundary conditions. Kinematic considerations suggest that boundary layer separation is a prerequisite for rotor formation. The numerical simulations demonstrate that boundary layer separation is greatly facilitated by the adverse pressure gradients associated with trapped mountain lee waves and that boundary layer processes and lee-wave-induced perturbations interact synergistically to produce low-level rotors. Pairs of otherwise identical free-slip and no-slip simulations show a strong correlation between the strength of the lee-wave-induced pressure gradients in the free-slip simulation and the strength of the reversed flow in the corresponding no-slip simulation. Mechanical shear in the planetary boundary layer is the primary source of a sheet of horizontal vorticity that is lifted vertically into the lee wave at the separation point and carried, at least in part, into the rotor itself. Numerical experiments show that high shear in the boundary layer can be sustained without rotor development when the atmospheric structure is unfavorable for the formation of trapped lee waves. Although transient rotors can be generated with a free-slip lower boundary, realistic rotors appear to develop only in the presence of surface friction. In a series of simulations based on observational data, increasing the surface roughness length beyond values typical for a smooth surface (z(0) = 0.01 cm) decreases the rotor strength, although no rotors form when free-slip conditions are imposed at the lower boundary. A second series of simulations based on the same observational data demonstrate that increasing the surface heat flux above the lee slope increases the vertical extent of the rotor circulation and the strength of the turbulence but decreases the magnitude of the reversed rotor flow. [References: 40]
机译:使用自由滑移和无滑移下边界条件,通过非静力耦合海洋-大气中尺度预报系统(COAMPS)模型,通过一系列高分辨率模拟研究了与山里风相关的转子流的发展。运动学上的考虑表明边界层分离是转子形成的先决条件。数值模拟表明边界层的分离通过与困留的山风波相关的不利压力梯度而大大促进了,边界层过程和风波引起的扰动协同作用产生了低水平的转子。成对的在其他方面相同的自由滑动和不滑动仿真显示,在自由滑动仿真中回风波诱导的压力梯度强度与相应的不滑动仿真中的逆流强度之间存在很强的相关性。行星边界层中的机械剪切是水平涡旋的主要来源,该涡旋在分离点被垂直提升到回风中,并至少部分地进入转子自身。数值实验表明,当大气结构不利于回风的形成时,边界层的高剪切力就可以维持,而无需转子的发展。尽管可以在自由滑移的下边界处生成瞬态转子,但实际的转子似乎仅在存在表面摩擦的情况下才会发展。在基于观测数据的一系列模拟中,将表面粗糙度长度增加到超过平滑表面的典型值(z(0)= 0.01 cm)会降低转子强度,尽管在较低的位置施加自由滑移条件时不会形成转子边界。基于相同观测数据的第二系列模拟结果表明,在背风斜率以上增加表面热通量会增加转子环流的垂直程度和湍流强度,但会减小反向转子流的大小。 [参考:40]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号