...
首页> 外文期刊>Journal of the Atmospheric Sciences >Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. Part II: Double-Moment Microphysics
【24h】

Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. Part II: Double-Moment Microphysics

机译:应用一种新颖的建模方法,可以解决对深对流的微观物理影响。第二部分:双瞬间微物理学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The suggested impact of pollution on deep convection dynamics, referred to as the convective invigoration, is investigated in simulations applying microphysical piggybacking and a comprehensive double-moment bulk microphysics scheme. The setup follows the case of daytime convective development over land based on observations during the Large-Scale Biosphere-Atmosphere (LBA) experiment in Amazonia. In contrast to previous simulations with single-moment microphysics schemes and in agreement with results from bin microphysics simulations by others, the impact of pollution simulated by the double-moment scheme is large for the upper-tropospheric convective anvils that feature higher cloud fractions in polluted conditions. The increase comes from purely microphysical considerations: namely, the increased cloud droplet concentrations in polluted conditions leading to the increased ice crystal concentrations and, consequently, smaller fall velocities and longer residence times. There is no impact on convective dynamics above the freezing level and thus no convective invigoration. Polluted deep convective clouds precipitate about 10% more than their pristine counterparts. The small enhancement comes from smaller supersaturations below the freezing level and higher buoyancies inside polluted convective updrafts with velocities between 5 and 10 m s(-1). The simulated supersaturations are large, up to several percent in both pristine and polluted conditions, and they call into question results from deep convection simulations applying microphysical schemes with saturation adjustment. Sensitivity simulations show that the maximum supersaturations and the upper-tropospheric anvil cloud fractions strongly depend on the details of small cloud condensation nuclei (CCN) that can be activated in strong updrafts above the cloud base.
机译:在应用微物理piggy带和全面的双矩体微物理方案的模拟中,研究了污染对深对流动力学(称为对流激励)的建议影响。该设置是基于亚马逊地区大规模生物圈-大气(LBA)实验期间的观测结果,得出白天对流对陆发展的情况。与以前使用单矩微物理方案进行的模拟相反,并且与其他人通过bin微物理方案进行的模拟结果相对照,双矩方案所模拟的污染对高对流层对流砧座的影响较大,对流砧座的受污染云量较高条件。这种增加来自纯粹的微观物理考虑:即,在污染条件下增加的云滴浓度导致冰晶浓度增加,因此,下降速度较小,停留时间更长。对高于冰点水平的对流动力学没有影响,因此也没有对流振奋。受污染的深层对流云的沉淀量比原始云高出约10%。较小的增强来自低于冻结水平的较小的过饱和度和受污染的对流上升气流中的较高的蓝度,速度在5至10 m s(-1)之间。模拟的过饱和度很大,在原始和受污染的情况下都高达百分之几,它们使深对流模拟的结果受到质疑,该对流模拟应用了具有饱和度调整的微物理方案。敏感性模拟显示,最大过饱和度和对流层上砧云的分数强烈取决于小云凝结核(CCN)的细节,该凝结核可在云层以上的强上升气流中被激活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号