...
首页> 外文期刊>Journal of the American Society for Horticultural Science >A Chlorophyll Fluorescence-based Biofeedback System to Control Photosynthetic Lighting in Controlled Environment Agriculture
【24h】

A Chlorophyll Fluorescence-based Biofeedback System to Control Photosynthetic Lighting in Controlled Environment Agriculture

机译:基于叶绿素荧光的生物反馈系统可控制环境农业中的光合作用照明

获取原文
获取原文并翻译 | 示例
           

摘要

Photosynthetic lighting is one of the main costs of running controlled environment agriculture facilities. To optimize photosynthetic lighting, it is important to understand how plants use the provided light. When photosynthetic pigments absorb photons, the energy from those photons is used to drive the light reactions of photosynthesis, thermally dissipated, or re-emitted by chlorophyll as fluorescence. Chlorophyll fluorescence measurements can be used to determine the quantum yield of photosystem II (Phi(PSII)) and nonphotochemical quenching (NPQ), which is indicative of the amount of absorbed light energy that is dissipated as heat. Our objective was to develop and test a biofeedback system that allows for the control of photosynthetic photon flux density (PPFD) based on the physiological performance of the plants. To do so, we used a chlorophyll fluorometer to measure Phi(PSII), and used these data and PPFD to calculate the electron transport rate (ETR) through PSII. A datalogger then adjusted the duty cycle of the light-emitting diodes (LEDs) based on the ratio of the measured ETR to a predefined target ETR (ETRT). The biofeedback system was able to maintain ETRs of 70 or 100 mu mol.m(-2).s(-1) over 16-hour periods in experiments conducted with lettuce (Lactuca sativa). With an ETRT of 70 mu mol.m(-2).s(-1), Phi(PSII) was stable throughout the 16 hour and no appreciable changes in PPFD were needed. At an ETRT of 100 mu mol.m(-2).s(-1), Phi(PSII) gradually decreased from 0.612 to 0.582. To maintain ETR at 100 mu mol.m(-2).s(-1), PPFD had to be increased from 389 to 409 mu mol.m(-2).s(-1), resulting in a gradual decrease of Phi(PSII) and an increase in NPQ. The ability of the biofeedback system to achieve a range of different ETRs within a single day was tested using lettuce, sweetpotato (Ipomoea batatas), and pothos (Epipremnum aureum). As the ETRT was gradually increased, the PPFD required to achieve that ETR also increased, whereas Phi(PSII) decreased. Surprisingly, a subsequent decrease in ETRT, and in the PPFD required to achieve that ETR, resulted in only a small increase in Phi(PSII). This indicates that Phi(PSII) was reduced because of photoinhibition. Our results show that the biofeedback system is able to maintain a wide range of ETRs, while it also is capable of distinguishing between NPQ and photoinhibition as causes for decreases in Phi(PSII).
机译:光合照明是运行可控环境农业设施的主要成本之一。为了优化光合照明,重要的是要了解植物如何使用所提供的光。当光合色素吸收光子时,来自那些光子的能量将用于驱动光合作用的光反应,进行热耗散或由叶绿素作为荧光重新发射。叶绿素荧光测量可用于确定光系统II(Phi(PSII))和非光化学猝灭(NPQ)的量子产率,这表明作为热耗散的吸收光能的数量。我们的目标是开发和测试生物反馈系统,该系统可根据植物的生理性能控制光合光子通量密度(PPFD)。为此,我们使用叶绿素荧光计测量Phi(PSII),并使用这些数据和PPFD计算通过PSII的电子传输速率(ETR)。然后,数据记录器根据测得的ETR与预定义目标ETR(ETRT)的比率,调整发光二极管(LED)的占空比。在用生菜(莴苣)进行的实验中,生物反馈系统能够在16小时内保持70或100μmol.m(-2).s(-1)的ETR。 ETRT为70μmol.m(-2).s(-1),在整个16小时内Phi(PSII)稳定,不需要PPFD的明显变化。在ETRT为100μmol.m(-2).s(-1)时,Phi(PSII)从0.612逐渐降低至0.582。为了将ETR维持在100μmol.m(-2).s(-1),PPFD必须从389μmol.m(-2).s(-1)增加到409μmol.m(-2).s(-1),导致逐渐降低Phi(PSII)和NPQ的增加。使用生菜,甘薯(Ipomoea batatas)和马铃薯(Epipremnum aureum)测试了生物反馈系统在一天之内实现一系列不同ETR的能力。随着ETRT逐渐增加,达到ETR所需的PPFD也增加,而Phi(PSII)减少。出人意料的是,随后的ETRT降低以及实现该ETR所需的PPFD导致Phi(PSII)的增加很小。这表明由于光抑制作用,Phi(PSII)减少了。我们的结果表明,生物反馈系统能够维持广泛的ETR,同时也能够区分NPQ和光抑制,这是导致Phi(PSII)降低的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号