...
首页> 外文期刊>Journal of the American Society for Mass Spectrometry >How constant momentum acceleration decouples energy and space focusing in distance-of-flight and time-of-flight mass spectrometries
【24h】

How constant momentum acceleration decouples energy and space focusing in distance-of-flight and time-of-flight mass spectrometries

机译:恒定的动量加速度如何在飞行距离和飞行时间质谱仪中使能量和空间聚焦分离

获取原文
获取原文并翻译 | 示例
           

摘要

Resolution in time-of-flight mass spectrometry (TOFMS) is ordinarily limited by the initial energy and space distributions within an instrument's acceleration region and by the length of the field-free flight zone. With gaseous ion sources, these distributions lead to systematic flight-time errors that cannot be simultaneously corrected with conventional static-field ion-focusing devices (i.e.; an ion mirror). It is known that initial energy and space distributions produce non-linearly correlated errors in both ion velocity and exit time from the acceleration region. Here we reinvestigate an old acceleration technique, constant-momentum acceleration (CMA), to decouple the effects of initial energy and space distributions. In CMA, only initial ion energies (and not their positions) affect the velocity ions gain. Therefore, with CMA, the spatial distribution within the acceleration region can be manipulated without creating ion-velocity error. The velocity differences caused by a spread in initial ion energy can be corrected with an ion mirror. We discuss here the use of CMA and independent focusing of energy and space distributions for both distance-of-flight mass spectrometry (DOFMS) and TOFMS. Performance characteristics of our CMA-DOFMS and CMA-TOFMS instrument, fitted with a glow-discharge ionization source, are described. In CMA-DOFMS, resolving powers (FWHM) of greater than 1000 are achieved for atomic ions with a flight length of 285 mm. In CMA-TOFMS, only ions over a narrow range of m/z values can be energy-focused; however, the technique offers improved resolution for these focused ions, with resolving powers of greater than 2000 for a separation distance of 350 mm. [Figure not available: see fulltext.]
机译:飞行时间质谱(TOFMS)的分辨率通常受仪器加速区内的初始能量和空间分布以及无场飞行区的长度限制。对于气态离子源,这些分布会导致系统的飞行时间误差,而传统的静电场离子聚焦装置(即离子镜)无法同时校正这些误差。众所周知,初始能量和空间分布会在离子速度和加速区域的出射时间上产生非线性相关的误差。在这里,我们重新研究了一种旧的加速技术,即恒定动量加速(CMA),以消除初始能量和空间分布的影响。在CMA中,只有初始离子能量(而不是其位置)会影响速度离子的增益。因此,使用CMA,可以控制加速区域内的空间分布而不会产生离子速度误差。可以用离子镜校正由初始离子能量的扩散引起的速度差。我们在这里讨论CMA的使用以及飞行距离质谱(DOFMS)和TOFMS的能量和空间分布的独立聚焦。描述了装有辉光放电电离源的CMA-DOFMS和CMA-TOFMS仪器的性能特征。在CMA-DOFMS中,对于飞行距离为285 mm的原子离子,可实现大于1000的分辨能力(FWHM)。在CMA-TOFMS中,只有在m / z值的狭窄范围内的离子才可以集中能量。但是,该技术为这些聚焦离子提供了更高的分辨率,对于350 mm的分离距离,其分辨力大于2000。 [图不可用:请参见全文。]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号