...
首页> 外文期刊>Journal of Sound and Vibration >Towards deep and simple understanding of the transcendental eigenproblem of structural vibrations
【24h】

Towards deep and simple understanding of the transcendental eigenproblem of structural vibrations

机译:深入而简单地理解结构振动的先验本征问题

获取原文
获取原文并翻译 | 示例
           

摘要

When using exact methods for undamped free vibration problems the generalized linear eigenvalue problem (K - omega(2)M) D = 0 of approximate methods, e.g., finite elements, is replaced by the transcendental eigenvalue problem K (omega) D = 0. Here omega is the circular frequency; D is the displacement amplitude vector; M and K are the mass and static stiffness matrices; and K(omega) is the dynamic stiffness matrix, with coefficients which include trigonometric and hyperbolic functions involving omega and mass because elements (for example, bars or beams) are analyzed exactly by solving their governing differential equations. The natural frequencies of this transcendental eigenvalue problem are generally found by the Wittrick-Williams algorithm which gives the number of natural frequencies below omega(t) a trial value of omega, as Sigma J(m) + s{K(omega(t))} where s{} denotes the readily computed sign count property of K(omega) and the summation is over the clamped-clamped natural frequencies of all elements of the structure. Understanding the alternative solution forms of the transcendental eigenvalue problem is important both to accelerate convergence to natural frequencies, e.g., by plotting K(omega), and to improve the mode calculations, which lack the complete reliability of natural frequencies obtained by using the Wittrick-Williams algorithm. The three solution forms are: K(omega) = 0; D = 0 with K(omega) --> infinity; and K(omega) not equal 0 with D not equal 0. The literature covers the first two forms thoroughly but the third form has been almost totally ignored. Therefore, it is now examined thoroughly, principally by analytical studies of simple bar structures and also by confirmatory numerical results for a rigidly jointed plane frame. Although structures are unlikely to have exactly the properties giving this form, it needs to be understood, particularly because ill-conditioning can occur for structures approximating those for which it occurs. (C) 2002 Elsevier Science Ltd. All rights reserved. [References: 9]
机译:当使用精确方法求解无阻尼自由振动问题时,近似方法(例如有限元)的广义线性特征值问题(K-omega(2)M)D = 0被先验特征值问题K(ω)D = 0代替。 ω是循环频率;ω是循环频率。 D是位移振幅矢量; M和K是质量和静态刚度矩阵; K(ω)是动态刚度矩阵,其系数包括涉及三角函数和质量的三角函数和双曲线函数,因为元素(例如,条形或梁形)通过求解其控制的微分方程而得以精确分析。先验特征值问题的固有频率通常由Wittrick-Williams算法找到,该算法给出低于ω(t)的固有频率数为ω的试验值,例如Sigma J(m)+ s {K(omega(t) }}其中s {}表示容易计算出的K(ω)的符号计数属性,并且求和超过结构中所有元素的钳位固有频率。了解先验特征值问题的替代解决方案形式对于加快向自然频率的收敛(例如通过绘制 K(ω))和改进模式计算都很重要,因为缺乏通过使用 K(ω)获得的自然频率的完全可靠性。 Wittrick-Williams算法。三种解决方案形式为: K(omega) = 0; D = 0且 K(omega)->无穷大;和 K(omega)不等于0,D不等于0。文献全面介绍了前两种形式,但几乎完全忽略了第三种形式。因此,现在主要是通过对简单钢筋结构的分析研究,以及通过对刚性连接的平面框架进行验证性的数值结果来进行彻底的检查。尽管结构不太可能具有赋予该形式的确切属性,但需要了解它,特别是因为不适适应性可能会发生于与之相似的状态。 (C)2002 Elsevier ScienceLtd。保留所有权利。 [参考:9]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号