首页> 外文期刊>Journal of Sound and Vibration >Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment
【24h】

Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment

机译:采用智能约束层阻尼(SCLD)处理的梁有限元公式化和主动振动控制研究

获取原文
获取原文并翻译 | 示例
           

摘要

This work deals with the active vibration control of beams with smart constrained layer damping (SCLD) treatment. SCLD design consists of viscoelastic shear layer sandwiched between two layers of piezoelectric sensors and actuator. This composite SCLD when bonded to a vibrating structure acts as a smart treatment. The sensor piezoelectric layer measures the vibration response of the structure and a feedback controller is provided which regulates the axial deformation of the piezoelectric actuator (constraining layer), thereby providing adjustable and significant damping in the structure. The damping offered by SCLD treatment has two components, active action and passive action. The active action is transmitted from the piezoelectric actuator to the host structure through the viscoelastic layer. The passive action is through the shear deformation in the viscoelastic layer. The active action apart from providing direct active control also adjusts the passive action by regulating the shear deformation in the structure. The passive damping component of this design eliminates spillover, reduces power consumption, improves robustness and reliability of the system, and reduces vibration response at high-frequency ranges where active damping is difficult to implement. A beam finite element model has been developed based on Timoshenko's beam theory with partially covered SCLD. The Golla-Hughes-McTavish (GHM) method has been used to model the viscoelastic layer. The dissipation co-ordinates, defined using GHM approach, describe the frequency-dependent viscoelastic material properties. Models of PCLD and purely active systems could be obtained as a special case of SCLD. Using linear quadratic regulator (LQR) optimal control, the effects of the SCLD on vibration suppression performance and control effort requirements are investigated. The effects of the viscoelastic layer thickness and material properties on the vibration control performance are investigated. (C) 2002 Academic Press. [References: 18]
机译:这项工作通过智能约束层阻尼(SCLD)处理来处理梁的主动振动控制。 SCLD设计由夹在两层压电传感器和执行器之间的粘弹性剪切层组成。这种复合材料SCLD结合到振动结构后,可作为一种明智的处理方法。传感器压电层测量结构的振动响应,并提供反馈控制器,该控制器调节压电致动器(约束层)的轴向变形,从而在结构中提供可调节的显着阻尼。 SCLD处理提供的阻尼包括两个部分,主动作用和被动作用。主动作用通过粘弹性层从压电致动器传递到主体结构。被动作用是通过粘弹性层中的剪切变形。除了提供直接主动控制外,主动作用还通过调节结构中的剪切变形来调整被动作用。此设计的无源阻尼组件消除了溢出,降低了功耗,提高了系统的鲁棒性和可靠性,并降低了难以实现有源阻尼的高频范围的振动响应。基于Timoshenko的梁理论,已开发了部分有限SCLD的梁有限元模型。 Golla-Hughes-McTavish(GHM)方法已用于对粘弹性层进行建模。使用GHM方法定义的耗散坐标描述了随频率变化的粘弹性材料的特性。作为SCLD的特殊情况,可以获得PCLD和纯有源系统的模型。使用线性二次调节器(LQR)最优控制,研究了SCLD对减振性能和控制作用力要求的影响。研究了粘弹性层厚度和材料性能对振动控制性能的影响。 (C)2002学术出版社。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号